Bayesian deep learning: bridging the gap between probabilistic graphical models and deep learning

Hao Wang The Hong Kong University of Science and Technology

My Research Interest

Machine Learning

Data Mining

My Research Interest

Recommender Systems

Social Network Analysis

Deep Learning

Probabilistic Graphical Models

[Wang & Li, IJCAI 2013]

"Online Egocentric Models for Citation Network" [Wang & Li, IJCAI 2013]

- 1. Convex formulation for online updates of models
- 2. Truncate insignificant terms to approximate optimal solutions and speed up training

Existing models

Our model

- Networks as auxiliary information
- Speed up training and boost accuracy

"Collaborative Topic Regression with Social Regularization for Tag Recommendation"

```
[Wang et al., IJCAI 2013]
```


"Relational Collaborative Topic Regression for Recommender Systems" [Wang & Li, TKDE 2015]

"Collaborative Topic Regression with Social Regularization for Tag Recommendation"

```
[Wang et al., IJCAI 2013]
```

- 1. Use network information as a prior to regularize the model
- 2. Use product of Gaussians to bridge heterogeneous information

	Title	How muc	h can behavio	oral targeting help online advertising?	
Article information	Top topic 1	web, search, engine, pages, keyword			
	Top topic 2	mobile, phones, attitudes, advertising, consumer			
	7 true tags	behavioral_targeting, advertising, ads, user_profile, computational_advertising, recommend, user-behavior			
Top 10 recommended tags	CTR (baseli	ne)	TRUE	CTR-SR (our method)	TRUE
	1. random-walks		no	1. behavioral_targeting	yes
	2. page-rank		no	2. ads	yes
	3. computational_adv	vertising	yes	3. computational_advertising	yes
	4. citizen-science		no	4. random-walks	no
	5. natural_history		no	5. page-rank	no
	6. search_engine		no	6. developing	no
	7. engine		no	7. recommend	yes
	8. searchengine		no	8. advertising	yes
	9. what		no	9. what	no
	10. re-ranking		no	10. need	no

[Wang et al., IJCAI 2013]

"Relational Collaborative Topic Regression for Recommender Systems" [Wang & Li, TKDE 2015]

- Use network information as observed variables
- 2. A continuous family of link probability functions
- 3. Use auxiliary information to speed up convergence and cut training time

Cut Training Time

Training Time per Iteration \times Number of Iterations = Total Training Time

(P: Density of ratings in the training set)

[Wang & Li, TKDE 2015]

Bayesian Deep Learning

Bayesian Deep Learning

"Collaborative Deep Learning for Recommender Systems" [Wang et al., KDD 2015]

"Relational Stacked Denoising Autoencoder for Tag Recommendation" [Wang et al., AAAI 2015]

"Collaborative Deep Learning for Recommender Systems" [Wang et al., KDD 2015]

Motivation:

- Deep learning is good at perception, not recommendation
- Collaborative Filtering is good at recommendation, not perception
- Combine the power of the two

"Collaborative Deep Learning for Recommender Systems" [Wang et al., KDD 2015]

- 1. A unified probabilistic graphical model
- 2. Break the i.i.d. assumption
- 3. Easy to incorporate auxiliary information

Corrupted data

Clean data

[Vincent et al. 2010]

Graphical model:

[Wang et al., KDD 2015]

Graphical model:

Collaborative deep learning

SDAE

Two-way interaction

Notation:

${f R}$ rating of item j from user i ${f x}_0$

v latent vector of item j

(u) latent vector of user i

o corrupted data

- \mathbf{x}_c clean data
- w⁺ weights and biases

 $\mathbf{x}_{L/2}$ content representation

[Wang et al., KDD 2015]

"Relational Stacked Denoising Autoencoder for Tag Recommendation" [Wang et al., AAAI 2015]

- 1. Connected items have similar features
- 2. Design a graphical model to incorporate network information
- 3. Can be extended for multiple networks

General Framework:

- 1. Ability of understanding text, images, and videos
- 2. Ability of inference and planning under uncertainty
- Close the gap between human intelligence and artificial intelligence

Thanks! Q&A

September 11th , 2015