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@ Social Network Analysis

Motivation:

Scale

Granularity Fineness

"Online Egocentric Models for
Citation Network”
[ Wang & Li, [JCAl 2013 ]

@ Existing models
@ Our model
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@ Social Network Analysis
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"Online Egocentric Models for
Citation Network”
[ Wang & Li, [JCAl 2013 ]

Main Idea:

1. Convex formulation for online
updates of models

2. Truncate insignificant terms to
approximate optimal solutions and
speed up training



Social Network Analysis
Vleets Recommender Systems

Motivation:

Speed

Accuracy

* Networks as auxiliary information

* Speed up training and boost accuracy @ Existing models

@® Our model
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"Collaborative Topic Regression with
Social Regularization for Tag Recom-
mendation”

[ Wang et al., IJCAl 2013 ]

Recommender Systems

“Relational Collaborative Topic Re-
gression for Recommender Systems”
[ Wang & Li, TKDE 2015 ]



tag Main Idea:

— item» 1 2 3 4 5 . . .
2D —E 1[v12727212]" 1. Usenetwork information as a prior
=N N2vi?212v 02 to regularize the model
o JE 3 2?21v 7?2 2. Useproduct of Gaussiansto
S VAR VAL I - - -
- [ - i bridge heterogeneous information
== 5vi?712.2.?

"Collaborative Topic Regression with
Social Regularization for Tag Recom-
mendation”

[ Wang et al., IJCAl 2013 ]



Title How much can behavioral targeting help online advertising?

Article Top topic1 web, search, engine, pages, keyword
. . Top topic 2 mobile, phones, attitudes, advertising, consumer
information . . . ,
behavioral_targeting, advertising, ads, user_profile,
7 true tags , . :
computational_advertising, recommend, user-behavior
CTR (baseline) TRUE CTR-SR (our method) TRUE
1. random-walks no 1. behavioral_targeting yes
2. page-rank no 2. ads yes
3. computational_advertising yes 3. computational_advertising yes
Top 10 4. Citizen-science no 4. random-walks no
recommended 5. natural_history no 5. page-rank no
tags 6. search_engine no 6. developing no
7. engine no 7. recommend yes
8. searchengine no 8. advertising yes
9. what no 9. what no
10. re-ranking no 10. need no

[Wang et al., IJCAl 2013 ]



“Relational Collaborative Topic Re-
gression for Recommender Systems”
[ Wang & Li, TKDE 2015 ]

Main Ildea:

1.

Use network information as
observed variables

A continuous family of link
probability functions

Use auxiliary information to speed
up convergence and cut training
time



Cut Training Time
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Training Time per Iteration X Number of Iterations = Total Training Time

(P: Density of ratings in the training set)

[ Wang & Li, TKDE 2015 ]



Bayesian Deep Learning

Motivation:

’ ‘Our goal
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Inference

Deep Learning & Graphical Models

Perception & Inference ® Deep learning
@ Graphical model

@ Bayesian deep learning




Bayesian Deep Learning
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“Collaborative Deep Learning for "Relational Stacked Denoising Auto-
Recommender Systems” encoder for Tag Recommendation”
[Wang et al., KDD 2015 ] [ Wang et al., AAAl 2015 ]
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"Collaborative Deep Learning for

Recommender Systems”

[Wang et al., KDD 2015 ]

Recommender Systems
Motivation:
* Deep learningis good at perception,
not recommendation
* Collaborative Filtering is good at
recommendation, not perception

Combine the power of the two



Deep Learning
Meets Recommender Systems

( ' Main ldea:
| 1. Avunified probabilistic graphical
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“Collaborative Deep Learning for
Recommender Systems”
[Wang et al., KDD 2015 ]
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Clean data

Corru pted data

[Vincent et al. 2010 ]



@ Probabilistic SDAE

Graphical model:

Notation:

. corrupted data
. clean data

@ weights and biases

[Wang et al., KDD 2015 ]
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Graphical model:
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Collaborative deep learning SDAE
Two-way interaction Notation:
. @rating of item j from user i corrupted data
-Powerfgl repreS?”tat'on v latent vector of item j @ clean data
*Infer missing ratings , O wei ,
eInfer missing content "u latent vector of user i ‘w' weights and biases

x5 content representation

[Wang et al., KDD 2015 ]



@ Social Network Analysis

Main Ildea:

1. Connected items have similar
features

2. Design a graphical model to
incorporate network information

3. Can be extended for multiple
networks
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"Relational Stacked Denoising Auto-
encoder for Tag Recommendation”
[ Wang et al., AAAI 2015 ]
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' Future Goal

/ ™ \I General Framework:
et 1 1. Ability of understanding text,
f’;?'{f‘j‘ Si%., | images, ar\d videos |
s ' : 2. Ability of inference and planning
| under uncertainty
~ i 3. Close the gap between human
I

\ bistd J intelligence and artificial
__________________ / intelligence

Deep Learning: Graphical Model:
“erception & understanding Inference & decisi
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