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Social Network Analysis 

“Online Egocentric Models for  
Citation Network” 

[ Wang & Li, IJCAI 2013 ] 

Scale 

Granularity Fineness 

Motivation: 

Existing models 

Our model 



Social Network Analysis 

Main Idea: 
1. Convex formulation for online 

updates of models 
2. Truncate insignificant terms to 

approximate optimal solutions and 
speed up training  

“Online Egocentric Models for  
Citation Network” 

[ Wang & Li, IJCAI 2013 ] 



Social Network Analysis 
Meets Recommender Systems 

• Networks as auxiliary information 
• Speed up training and boost accuracy 

Speed 

Accuracy 

Motivation: 

Existing models 

Our model 



Social Network Analysis 
Meets Recommender Systems 

“Collaborative Topic Regression with 
Social Regularization for Tag Recom- 
mendation” 

[ Wang et al., IJCAI 2013 ] 

“Relational Collaborative Topic Re- 
gression for Recommender Systems” 

[ Wang & Li, TKDE 2015 ] 



Social Network Analysis 
Meets Recommender Systems 

Main Idea: 
1. Use network information as a prior  

to regularize the model 
2. Use product of  Gaussians to 

bridge heterogeneous information 

“Collaborative Topic Regression with 
Social Regularization for Tag Recom- 
mendation” 

[ Wang et al., IJCAI 2013 ] 



Social Network Analysis 
Meets Recommender Systems 

[ Wang et al., IJCAI 2013 ] 

Article 
information 

Title  How much can behavioral targeting help online advertising? 
Top topic 1  web, search, engine, pages, keyword 
Top topic 2  mobile, phones, attitudes, advertising, consumer 

7 true tags 
 behavioral_targeting, advertising, ads, user_profile, 
 computational_advertising, recommend, user-behavior 

Top 10 
recommended 

tags 

CTR (baseline) TRUE CTR-SR (our method) TRUE 

 1. random-walks  no  1. behavioral_targeting  yes 

 2. page-rank  no  2. ads  yes 

 3. computational_advertising  yes  3. computational_advertising  yes 

 4. citizen-science  no  4. random-walks  no 
 5. natural_history  no  5. page-rank  no 
 6. search_engine  no  6. developing  no 
 7. engine  no  7. recommend  yes 
 8. searchengine  no  8. advertising  yes 
 9. what  no  9. what  no 
 10. re-ranking  no  10. need  no 



Social Network Analysis 
Meets Recommender Systems 

Main Idea: 
1. Use network information as 

observed variables 
2. A continuous family of link 

probability functions 
3. Use auxiliary information to speed 

up convergence and cut training 
time  

“Relational Collaborative Topic Re- 
gression for Recommender Systems” 

[ Wang & Li, TKDE 2015 ] 



Social Network Analysis 
Meets Recommender Systems 

[ Wang & Li, TKDE 2015 ] 

Training Time per Iteration  X  Number of Iterations  =  Total Training Time 

(P: Density of ratings in the training set) 

Cut Training Time 



Bayesian Deep Learning 

Deep Learning & Graphical Models 

Perception & Inference 

Perc’ 

Motivation: 

Graphical model 

Bayesian deep learning 

Inference 

Deep learning 

Our goal 



Bayesian Deep Learning 

“Collaborative Deep Learning for  
Recommender Systems” 

[ Wang et al., KDD 2015 ] 

“Relational Stacked Denoising Auto- 
encoder for Tag Recommendation” 

[ Wang et al., AAAI 2015 ] 



Deep Learning 
Meets Recommender Systems 

Motivation: 
• Deep learning is good at perception, 

not recommendation 
• Collaborative Filtering is good at 

recommendation, not  perception 
• Combine the power of the two 

“Collaborative Deep Learning for  
Recommender Systems” 

[ Wang et al., KDD 2015 ] 



Deep Learning 
Meets Recommender Systems 

Main Idea: 
1. A unified probabilistic graphical 

model 
2. Break the i.i.d. assumption 
3. Easy to incorporate auxiliary 

information 

“Collaborative Deep Learning for  
Recommender Systems” 

[ Wang et al., KDD 2015 ] 



Stacked Denoising Autoencoders (SDAE) 

Corrupted data Clean data 

[ Vincent et al. 2010 ] 



Probabilistic SDAE 

[ Wang et al., KDD 2015 ] 

Graphical model: 

corrupted data 

clean data 

weights and biases 

Notation: 



Collaborative Deep Learning 
Graphical model: 

Collaborative deep learning SDAE 

corrupted data 

clean data 

weights and biases 

content representation 

rating of item j from user i 

latent vector of item j 

latent vector of user i 

Notation: Two-way interaction 

•Powerful representation 
•Infer missing ratings 
•Infer missing content 

[ Wang et al., KDD 2015 ] 



Deep Learning 
Meets Social Network Analysis 

“Relational Stacked Denoising Auto- 
encoder for Tag Recommendation” 

[ Wang et al., AAAI 2015 ] 

Main Idea: 
1. Connected items have similar 

features 
2. Design a graphical model to 

incorporate network information 
3. Can be extended for multiple 

networks 



Future Goal 

General Framework: 
1. Ability of understanding text, 

images, and videos 
2. Ability of inference and planning 

under uncertainty 
3. Close the gap between human 

intelligence and artificial 
intelligence 
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