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•See (visual object recognition) 
•Read (text understanding) 
•Hear (speech recognition) 

•Think (inference and reasoning) 

Comprehensive AI 

Perception and Inference 
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Bayesian Deep Learning (BDL) 

Deep Learning & Graphical Models 

Perception & Inference/reasoning 
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Motivation: 

Graphical model 

Bayesian deep learning 

Inference/reasoning 

Deep learning 

Our goal 
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Perception component Task-Specific component 

Bayesian deep learning (BDL) 

•Maximum a posteriori (MAP) 
•Markov chain Monte Carlo (MCMC) 
•Variational inference (VI) 

Content understanding Target task 

Perception and Inference 
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Symptoms Reasoning and inference 

Perception component Task-Specific component 

Bayesian deep learning (BDL) 

Example: Medical Diagnosis 
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Content understanding Similarity, preferences 
Recommendation 

Perception component Task-Specific component 

Bayesian deep learning (BDL) 

Example: Movie Recommender Systems 
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A Principled Probabilistic Framework 

Perception Component Task-Specific Component 

Perception Variables 

Task Variables 

Hinge Variables 

[ Wang et al. 2016 ] 
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BDL Models for Different Applications 

[ Wang et al. 2016 ] 
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Bayesian Deep Learning:  
Under a Principled Framework 

Probabilistic Graphical Models 
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Collaborative Deep Learning 

[ Wang et al. 2015 (KDD) ] 
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Recommender Systems 

Observed preferences:  

To predict:  
Matrix completion 

Rating matrix: 
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Recommender Systems with Content 

Content information: 

Plots, directors, actors, etc. 
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Modeling the Content Information 

Handcrafted features Automatically 

learn features 

Automatically 

learn features and 

adapt for ratings 
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Modeling the Content Information 

1. Powerful features for content information 

Deep learning 

2. Feedback from rating information Non-i.i.d. 

Collaborative deep learning 
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Deep Learning 

Stacked denoising 
autoencoders 

Convolutional neural 
networks 

Recurrent neural 
networks 

Typically for i.i.d. data 
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Modeling the Content Information 

1. Powerful features for content information 

Deep learning 

2. Feedback from rating information Non-i.i.d. 

Collaborative deep learning (CDL) 
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Contribution 

Collaborative deep learning: 

 * deep learning for non-i.i.d. data 

 * joint representation learning and 

 collaborative filtering 
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Contribution 

Collaborative deep learning 

Complex target: 

 * beyond targets like classification and regression 

 * to complete a low-rank matrix 
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Contribution 

Collaborative deep learning 

Complex target 

First hierarchical Bayesian models for  

    deep hybrid recommender system 
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Stacked Denoising Autoencoders (SDAE) 

Corrupted input Clean input 

[ Vincent et al. 2010 ] 
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Probabilistic Matrix Factorization (PMF) 
Graphical model: 

Generative process: 

Objective function if using MAP: 

latent vector of item j 

latent vector of user i 

rating of item j from user i 

Notation: 

[ Salakhutdinov et al. 2008 ] 
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Probabilistic SDAE 

Generalized SDAE 

Graphical model: 

Generative process: 

corrupted input 

clean input 

weights and biases 

Notation: 
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Collaborative Deep Learning (CDL) 
Graphical model: 

Collaborative deep learning SDAE 

corrupted input 

clean input 

weights and biases 

content representation 

rating of item j from user i 

latent vector of item j 

latent vector of user i 

Notation: Two-way interaction 

•More powerful representation 
•Infer missing ratings from content 
•Infer missing content from ratings 
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A Principled Probabilistic Framework (Recap) 

Perception Component Task-Specific Component 

Perception Variables 

Task Variables 

Hinge Variables 

[ Wang et al. 2016 ] 
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CDL with Two Components 
Graphical model: 

Collaborative deep learning SDAE 

corrupted input 

clean input 

weights and biases 

content representation 

rating of item j from user i 

latent vector of item j 

latent vector of user i 

Notation: Two-way interaction 

•More powerful representation 
•Infer missing ratings from content 
•Infer missing content from ratings 
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Collaborative Deep Learning 

Neural network representation for degenerated CDL 
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Collaborative Deep Learning 

Information flows from ratings to content 
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Collaborative Deep Learning 

Information flows from content to ratings 
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Collaborative Deep Learning 

Representation learning <-> recommendation  
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Learning 

maximizing the posterior probability is equivalent to  
maximizing the joint log-likelihood 
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Learning 

Prior (regularization) for user latent vectors, weights, and biases 
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Learning 

Generating item latent vectors from content representation 
with Gaussian offset 
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Learning 

‘Generating’ clean input from the output of probabilistic SDAE 
with Gaussian offset 
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Learning 

Generating the input of Layer l from the output of Layer l-1 
with Gaussian offset 
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Learning 

measures the error of predicted ratings 
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Learning 

If       goes to infinity, the likelihood simplifies to 
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Update Rules 
For U and V, use block coordinate descent: 

For W and b, use a modified version of backpropagation: 
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Datasets 

Content information 

Titles and abstracts Titles and abstracts Movie plots 

[ Wang et al. 2011 ] 
[ Wang et al. 2013 ] 
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Evaluation Metrics 

Recall: 

Mean Average Precision (mAP): 

Higher recall and mAP indicate better recommendation performance 
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Comparing Methods 

Hybrid methods  
using BOW and  
ratings 

Loosely coupled;  
interaction is not 
two-way 

PMF+LDA 
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Recall@M 

citeulike-t, sparse setting 

citeulike-t, dense setting 

Netflix, sparse setting 

Netflix, dense setting 

When the ratings  
are very sparse: 

When the ratings  
are dense: 
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Mean Average Precision (mAP) 

Exactly the same as Oord et al. 2013, we set the cutoff point at 
500 for each user. 

A relative performance boost of about 50% 
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Number of Layers 

Sparse Setting 

Dense Setting 

The best performance is achieved when the number of layers is 2 or 3 
(4 or 6 layers of generalized neural networks). 
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Example User 

Moonstruck 

True Romance 

Romance 
Movies 

Precision: 30% VS 20% 
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Example User 

Johnny English 

American Beauty 

Action & 
Drama 
Movies 

Precision: 50% VS 20% 
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Example User 

Precision: 90% VS 50% 
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Summary: Collaborative Deep Learning 

Non-i.i.d (collaborative) deep learning 

With a complex target 

First hierarchical Bayesian models for  

    hybrid deep recommender system 

Significantly advance the state of the art 
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[ Li et al., CIKM 2015 ] 

Transformation to latent factors 

Transformation to latent factors 

Reconstruction error 

CDL: 

Marginalized CDL: 

Marginalized CDL 

Reconstruction error 
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[ Ying et al., PAKDD 2016 ] 

Collaborative Deep Ranking 
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Generative Process: Collaborative Deep Ranking 

50 



Both item content and user attributes 
User attributes: age, gender, occupation, country,  
city, geolacation, domain, etc [ Li et al., CIKM 2015 ] 

Symmetric CDL 
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User attributes Item content 

Item content 

Marginalized CDL: 

Symmetric CDL: 

Symmetric CDL 
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Other Extensions of CDL 

Word2vec, tf-idf 

Sampling-based, variational inference 

Tagging information, networks 
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Relational Stacked 
Denoising Autoencoders 

[ Wang et al. 2015 (AAAI) ] 
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Topic  hierarchy Topic generation 
Word generation 
Topic-word relation 
Inter-document relation 

BDL-Based Topic Models 
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BDL for Topic Models and Relational Learning 



Topic  hierarchy Inter-document relation 

BDL-Based Topic Models 
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Perception component Task-Specific component 

Relational SDAE as Relational Topic Models 

[ Wang et al. 2015 (AAAI) ] 



Relational SDAE: Motivation 

• Unsupervised representation learning 
• Enhance representation power with relational information 
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Probabilistic SDAE 

Generalized SDAE 

Graphical model: 

Generative process: 

corrupted input 

clean input 

weights and biases 

Notation: 

58 



Relational SDAE: Graphical Model 

corrupted input 

clean input 

adjacency matrix 

Notation: 
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Relational SDAE: Two Components 

Perception Component 

Task-Specific Component 
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Relational SDAE: Generative Process 
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Relational SDAE: Generative Process 
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Multi-Relational SDAE: Graphical Model 

corrupted input 

clean input 

adjacency matrix 

Notation: Product of Q+1 Gaussians 

Multiple networks:  
citation networks 
co-author networks 
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Network  A → Relational Matrix S 

Relational Matrix  S → Middle-Layer Representations 

Relational SDAE: Objective Function 
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Update Rules 
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From Representation to Tag Recommendation 
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Algorithm 
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Datasets 
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Sparse Setting, citeulike-a 
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Dense Setting, citeulike-a 
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Sparse Setting, movielens-plot 
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Dense Setting, movielens-plot 
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Case Study 1: Tagging Scientific Articles 

Precision: 10% VS 60% 
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Case Study 2: Tagging Movies (SDAE) 

Precision: 30% VS 60% 
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Case Study 2: Tagging Movies (RSDAE) 

Does not appear in the tag lists of movies linked to 
‘E.T. the Extra-Terrestrial’ 

Very difficult to discover this tag 
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Topic  hierarchy Inter-document relation 

BDL-Based Topic Models 
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Perception component Task-Specific component 

Relational SDAE as Deep Relational Topic Models 

[ Wang et al. 2015 (AAAI) ] 

Unified into a probabilistic relational model  

for relational deep learning 



Applications of Bayesian Deep Learning: 
Under a  Principled Framework 

Relational SDAE Collaborative Deep Learning 

Probabilistic Graphical Models 
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Take-home Messages 

 

• Probabilistic graphical models for formulating both 
representation learning and inference/reasoning 
components 

 

• Learnable representation serving as a bridge 

 

• Tight, two-way interaction is crucial 
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Future Goals 

General Framework: 
1. Ability of understanding text, 

images, and videos 

2. Ability of inference and planning 

under uncertainty 

3. Close the gap between human 

intelligence and artificial 
intelligence 
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Thanks! 

Q&A 

80 


