
Bidirectional Inference Networks:
A Class of Deep Bayesian Networks for Health Profiling

Hao Wang1, Chengzhi Mao2, Hao He1, Mingmin Zhao1, Tommi S. Jaakkola1, and Dina Katabi1
1MIT CSAIL, Cambridge, MA 2Columbia University, New York, NY

{hwang87, haohe, mingmin}@mit.edu, cm3797@columbia.edu, {tommi, dina}@csail.mit.edu

Abstract

We consider the problem of inferring the values of an arbi-
trary set of variables (e.g., risk of diseases) given other ob-
served variables (e.g., symptoms and diagnosed diseases) and
high-dimensional signals (e.g., MRI images or EEG). This
is a common problem in healthcare since variables of inter-
est often differ for different patients. Existing methods in-
cluding Bayesian networks and structured prediction either
do not incorporate high-dimensional signals or fail to model
conditional dependencies among variables. To address these
issues, we propose bidirectional inference networks (BIN),
which stich together multiple probabilistic neural networks,
each modeling a conditional dependency. Predictions are
then made via iteratively updating variables using backprop-
agation (BP) to maximize corresponding posterior probabil-
ity. Furthermore, we extend BIN to composite BIN (CBIN),
which involves the iterative prediction process in the train-
ing stage and improves both accuracy and computational effi-
ciency by adaptively smoothing the optimization landscape.
Experiments on synthetic and real-world datasets (a sleep
study and a dermatology dataset) show that CBIN is a sin-
gle model that can achieve state-of-the-art performance and
obtain better accuracy in most inference tasks than multiple
models each specifically trained for a different task.

Introduction
In healthcare, it is often desirable to infer an arbitrary set
of variables (e.g., the probability of having a particular
disease) given other known or observable variables (e.g.,
coughing, itching, or already diagnosed diseases) and high-
dimensional signals (e.g., ECG, EEG or CT) (Sesen et al.
2013). Which variables are known and which need to be in-
ferred typically vary across patients. Such inference prob-
lems are important to assist clinicians in making more in-
formed treatment decisions in clinical settings where uncer-
tainty is ubiquitous.

Traditionally, Baysian networks (BN) are used for this
task since they naturally reason with uncertain domain
knowledge. However, although BN can model relationship
among variables of interest, they do not model complex
high-dimensional data such as MRI images or EEG time se-
ries. Deep neural networks (NN), on the other hand, are able

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to process such high-dimensional signals. Recently, there
has been work that combines structured prediction and NN
(Belanger and McCallum 2016; Belanger, Yang, and Mc-
Callum 2017) to take into account the relationship among
variables of interest during prediction. However, (1) they are
designed to predict all variables at once without the ability
to infer an arbitrary subset of variables given others; (2) they
do not model conditional dependencies among variables.

In this paper, we propose bidirectional inference networks
(BIN) as a kind of probabilistic NN that can get the best
of all worlds: (1) it can handle high-dimensional data (e.g.,
EEG, CT); (2) it can infer an arbitrary subset VS of variables
in V given V \ VS ; (3) it can capture complex conditional
dependencies among variables of interest.

Note that a naive way to infer arbitrary VS is to train dif-
ferent NNs for different VS . However, this needs O(2N)
NNs when |V | = N and ignores the relationship among
variables to be predicted. Instead, BIN tries to model the fac-
torized joint distribution of V by connecting multiple prob-
abilistic NNs, each modeling a factor (conditional distribu-
tion). After it is jointly trained, predictions are made via first
initializing VS with a feedforward (FF) pass and then iter-
atively updating variables using backpropagation (BP) to
maximize corresponding posterior probability. BIN is then
extended to CBIN, which involves the iterative prediction
process in the training stage, consequently alleviating the
problem of local optima and improving the performance.

We evaluate our model on two datasets (a large-scale sleep
study (Quan et al. 1997) and a dermatology dataset (Lich-
man 2013)). Experiments show that a single BIN can predict
VS given V \ VS with performance comparable to or better
than training O(2N) separate models for O(2N) different
VS when there are N variables in V . We can also outper-
form state-of-the-art structured prediction models (Belanger
and McCallum 2016; Belanger, Yang, and McCallum 2017)
adapted for our task.

In summary, our contributions are as follows:
• We propose BIN, a probabilistic neural network model

that can perform bidirectional inference, handle high-
dimensional data, and effectively predict an arbitrary sub-
set VS of variables in V given V \ VS .

• We enhance BIN with composite likelihood to derive
composite BIN (CBIN), which not only improves the in-
ference accuracy but also reduces the number of iterations

needed during inference.
• Experiments show that BIN and CBIN can outperform

state-of-the-art structured prediction models adapted for
our task and achieve performance comparable to or even
better than training O(2N) separate models for O(2N)
different VS .

• We show that it is possible to predict health status includ-
ing physical and emotional well-being scores using EEG,
ECG, and breathing signals.

Related Work
Combination of Probabilistic Graphical Models and
Deep Neural Networks Our work is related to a re-
cent trend of combining probabilistic graphical models
(PGM) and deep NN (Wang and Yeung 2016). In partic-
ular, (Johnson et al. 2016) builds on variational autoen-
coders (VAE) (Kingma and Welling 2013; Sohn, Lee, and
Yan 2015) to propose structured VAE (SVAE), where they
leverage conjugacy to update some variational parameters
and use BP to update other parameters without conjugate
structures. (Lin, Khan, and Hubacher 2018) generalizes
SVAE to cover PGMs with non-conjugate factors and im-
prove its performance. In addition, some methods focus on
incorporating VAE into state-space models (as a kind of
PGMs) (Fraccaro et al. 2016; Krishnan, Shalit, and Son-
tag 2015; Archer et al. 2015) or recurrent neural networks
(RNN) (Chung et al. 2015; Gregor et al. 2015; Bayer and
Osendorfer 2014). For example, deep Kalman filters (Krish-
nan, Shalit, and Sontag 2015) use variational distributions
parameterized by multi-layer perceptrons or RNN to approx-
imate the posterior distributions of the hidden states in the
state-space models. Besides the VAE-based models above,
there are also models based on other forms of probabilis-
tic NN (Wang, Wang, and Yeung 2015; Zhang et al. 2016;
Wang, Shi, and Yeung 2017).

These methods focus more on generative modeling than
conditional structured prediction tasks. Besides, they usually
need different inference networks to infer different subsets
of variables, which means that O(2N) networks are needed
for general inference of N variables (each variable can be in
various forms, e.g., scalars and vectors). In our work, O(N)
subnetworks are sufficient to support general inference of N
variables. Note that one feasible way to avoid O(2N) net-
works in the SVAE framework is to combine it with our
method to enable BP-based inference. This is used as one
of our baselines. Note that our work is also different from
probabilistic NNs such as (Larochelle and Murray 2011;
Germain et al. 2015) (though they also model conditional
distributions using NN), which fail to infer an arbitrary sub-
set of variables and are often restricted to binary variables
(see Sec. 8 of the Supplement for detailed comparison).

Using Backpropagation as Inferential Procedures In
our method, both FF and BP are involved during infer-
ence. This is different from most previous works, where
only FF is involved during inference and BP is used to up-
date parameters during training. However, the idea of using
BP to (iteratively) compute predictions has been useful in
some applications. For example, BP has been used to gener-

ate adversarial data points that NN would misclassify with
high confidence (Goodfellow, Shlens, and Szegedy 2014;
Szegedy et al. 2013), to generate embeddings for docu-
ments (Le and Mikolov 2014), and to perform texture syn-
thesis or style transfer for images (Gatys, Ecker, and Bethge
2016; Gatys et al. 2017). In (Belanger and McCallum 2016;
Belanger, Yang, and McCallum 2017), the authors propose
variants of structured prediction energy networks (SPEN),
which utilize BP to perform structured predictions. How-
ever, (1) SPEN is designed to predict all variables of interest
at once given the input X and cannot perform inference on
an arbitrary subset of variables given others (which is the fo-
cus of our method). (2) Unlike our method, even if SPEN is
adapted to perform different inference cases, for most cases
it does not have the proper ‘prior distributions’ to provide
good initialization of the target variables VS (for example,
when inferring v2 given X, v1, and v3, SPEN does not have
the prior p(v2|X, v1) to provide initialization for v2 and can
only rely on the general prior p(v2|X), which does not in-
corporate information of v1), which is important for both
accuracy and efficiency, as shown in our experiments. (3)
Relationship among variables in SPEN is modeled using a
global energy function while BIN models the relationship in
a way similar to Bayesian networks. Hence BIN can handle
conditional dependencies, more easily incorporate domain
knowledge, and have better interpretability.

Natural-Parameter Networks Our model use natural-
parameter networks (NPN) as a building block (Wang, Shi,
and Yeung 2016). Different from vanilla NN which usually
takes deterministic input, NPN is a probabilistic NN taking
distributions as input. The input distributions go through lay-
ers of linear and nonlinear transformation to produce output
distributions. In NPN, all hidden neurons and weights are
also distributions expressed in closed form. As a simple ex-
ample, in a vanilla linear NN fw(x) = wx takes a scalar x
as input and computes the output based on a scalar param-
eter w; a corresponding Gaussian NPN would assume w is
drawn from a Gaussian distribution N (wm, ws) and that x
is drawn from N (xm, xs) (xs is set to 0 when the input is
deterministic). With θ = (wm, ws) as a learnable parameter
pair, NPN will then compute the mean and variance of the
output Gaussian distribution µθ(xm, xs) and sθ(xm, xs) in
closed form (bias terms are ignored for clarity) as:

µθ(xm, xs) = E[wx] = xmwm, (1)

sθ(xm, xs) = D[wx] = xsws + xsw
2
m + x2mws, (2)

Hence the output of this Gaussian NPN is a tuple
(µθ(xm, xs), sθ(xm, xs)) representing a Gaussian distribu-
tion instead of a single value. Input variance xs to NPN is set
to 0 in the next section. Note that since sθ(xm, 0) = x2mws,
wm and ws can still be learned even if xs = 0 for all data
points (see the Supplement for generalization of NPN to
handle vectors and matrices).

Bidirectional Inference Networks
Unlike typical inference networks that perform inference by
NN’s feedforward pass (Kingma and Welling 2013), our
proposed bidirectional inference networks (BIN) use the

feedforward pass and/or the backpropagration pass to per-
form inference. Such a design enables the same network to
(1) predict the output given the input, and (2) infer the input
from the output. In this section we introduce BIN’s learning
and inference process. Note that though we assume Gaussian
distributions for simplicity when necessary, our framework
applies to any exponential-family distributions (see Sec. 5 of
the Supplement for details).

Notation and Motivation
Notation and Problem Formulation We use X to denote
the high-dimensional information (e.g., EEG) of each sub-
ject and V = {vn}Nn=1 to denote the subject’s N attributes1

of interest. For any index set S ⊆ {1, 2 . . . N}, we define
VS = {vn|n ∈ S} and V−S = V \VS = {vn|n 6∈ S}. We use
Vk to denote a set {vn}kn=1, with V0 = ∅. We are interested
in learning a general network which is able to predict an ar-
bitrary subset VS ⊆ V given other attributes V−S = V \ VS
and X, the simplest case being predicting all attributes V
given X. Input variance (corresponding to xs in Eqn. 1-2) to
NPN is set to 0 in this section.

Motivating Example Consider modeling the relations
among X and variables VN = VN−1 ∪ {vN}. Naively, one
can learn a neural network f(·) with (X, VN−1) as input and
vN as output using the loss function L = ‖f(X, VN−1) −
vN‖22. Such a network has no problem predicting vN given
X and VN−1. However, if we want to infer VS ∈ VN−1
given f(·), X, and VN \ VS , we need to (1) randomly ini-
tialize VS , and (2) iteratively compute the gradient ∂L

∂VS
and

update VS until L is minimized. Unfortunately this does not
work because: (1) With random initialization, VS can easily
get trapped in a poor local optimum. (2) There are many ad-
versarial gradient directions that can decrease L and lead VS
far from the ground truth, especially in large and complex
networks (Zhang et al. 2017).

Model Formulation and Learning
To alleviate the problems above, we propose to construct
BIN as a ‘deep Bayesian network’ over V so that we can
properly initialize and regularize VS for the iterative updates
during inference (details of initialization and regularization
of VS during inference will be introduced later). We first fac-
torize the conditional joint distribution p(V |X) as:

p(V |X) =

N∏
n=1

p(vn|X, Vn−1). (3)

Note that here we assume full factorization using the chain
rule as in (Larochelle and Murray 2011) only for simplic-
ity (since usually we do not have prior knowledge on the
relationship among variables, as is the case in our exper-
iments); BIN is actually general enough to handle arbi-
trary factorization (i.e., Bayesian network structure). Be-
sides the difference in structure flexibility, as shown in the
following sections, both learning and inference of BIN are

1Note that though in this paper vi is a scalar value, our methods
are general enough to handle vectors.

also substantially different from (Larochelle and Murray
2011) and its variants. For example, BIN performs infer-
ence mainly with backpropagation, while (Larochelle and
Murray 2011) performs inference the usual way with feed-
forward; BIN naturally parameterizes each conditional with
an NPN, while (Larochelle and Murray 2011) uses parame-
ter sharing to parameterize different conditionals (see Sec. 8
of the Supplement for detailed comparison). The large per-
formance gap in Table 2∼4 also empirically verifies signifi-
cance of these differences.

As mentioned above, we can naturally use N NPN net-
works with parameters θn to model each of the condi-
tional distribution p(vn|X, Vn−1). The negative joint log-
likelihood for a given V can be written as:

L(V |X;θ) = −
N∑
n=1

log p(vn|X, Vn−1;θn), (4)

where each term corresponds to an NPN subnetwork:

− log p(vn|X, Vn−1;θn) =
‖µθn(X, Vn−1)− vn‖22

2sθn(X, Vn−1)

+
1

2
log sθn(X, Vn−1), (5)

where we assume Gaussian NPN in Eqn. 5 and θ =
{θn}Nn=1. µθn(·) and sθn(·) are the output mean and vari-
ance of the n-th NPN (similar to Eqn. 1∼2 with xs =
0). Our model is trained by minimizing the negative log-
likelihood (Eqn. 4∼5) of all M training samples.

Inference
General Inference Once the model is trained, it can be
used to predict an arbitrary subset VS given all other at-
tributes V−S and X using the maximum a posteriori (MAP)
estimates of p(VS |X, V−S):

argmax
VS

p(VS |X, V−S ;θ) = argmax
VS

p(VS , V−S |X;θ)

= argmin
VS

L(VS , V−S |X;θ), (6)

where L(VS , V−S |X;θ) is identical to Eqn. 4. We use Adam
(Kingma and Ba 2014) as an adaptive gradient update proce-
dure to minimize L(VS , V−S |X;θ) with respect to VS while
fixing X, V−S and θ.

On the Motivating Example: Echoing the motivat-
ing example in previous text, note that during the in-
ference of vn ∈ VS , the term ‖µθn (X,Vn−1)−vn‖22

2sθn (X,Vn−1)
in

Eqn. 5 provides both the initialization (i.e., initialize vn
as µθn(X, Vn−1)) and adaptive prior (regularization) while

the term
∑N
k=n+1(

‖µθk (X,Vk−1)−vk‖22
2sθk (X,Vk−1)

+
log sθk (X,Vk−1)

2)

provides the main part of ∂L
∂vn

to update vn (since vn ∈ Vk−1
when k > n). The trade-off between the prior and main
gradient terms then depends on predicted variance terms
sθk(X, Vk−1) where k ≥ n.

A Toy Example: As a more concrete example, assume
N = 2 and the structure p(v1|X)p(v2|X, v1). When infer-
ring v1’s MAP estimate given {X, v2}: p(v1|X) is described

𝑣1 𝑣2 𝑣3

𝑋

Step 1: Iterative FF/BP to infer 𝑣1

Step 2: One-pass FF

to predict 𝑣3
NPN 1

NPN 2

NPN 3

𝑣1 𝑣2

𝑣4

𝑋𝑉−𝑆

𝑣3 𝑣5

𝑣6
𝑉𝑆

Single step: One-pass FF to predict {𝑣5, 𝑣6}

𝑣1 𝑣2

𝑣4

𝑋

𝑣3 𝑣5

𝑣6

Step 1: Iterative FF/BP to infer {𝑣1, 𝑣3}

Step 2: One-pass FF

to predict {𝑣5, 𝑣6}

Figure 1: Transparent circles and shaded circles represent VS and V−S , respectively. Left: An example for hybrid inference when
VS = {v1, v3} and V−S = {v2}. Edges in different colors correspond to different probabilistic neural networks (NPN). Best
viewed in color. Middle: An example for forward prediction of a more general BN structure. Right: An example for hybrid
inference of a more general BN structure.

by sufficient statistics (µθ1(X), sθ1(X)) produced by NPN

and provides regularization ‖µθ1 (X)−v1‖22
2sθ1 (X) for v1’s MAP es-

timate; p(v2|X, v1) however depends on the actual value
of v1, not the NPN representation of v1, and therefore also
guides the MAP estimate of v1 (see Sec. 9 of the Supplement
for an illustrative figure on this example). Overall, MAP in-
ference is performed by minimizing the following objective
Ltoy w.r.t. v1 given {X, v2}:

Ltoy =
‖µθ1(X)− v1‖22

2sθ1(X)
+

1

2
log sθ1(X)

+
‖µθ2(X, v1)− v2‖22

2sθ2(X, v1)
+

1

2
log sθ2(X, v1)

Inference in Special Cases In general, inference can be
performed by iterative FF and BP to jointly find VS using
Eqn. 6. In some special cases where vN /∈ V−S , inference
can be sped up by leveraging the structure of the conditional
dependencies among variables. Next we consider two such
cases (where vN /∈ V−S):

Case 1 (Forward Prediction): When the task is to predict
VS = V \ Vk given X and V−S = Vk. We can use one-pass
FF to infer VS by greedy maximization as follows:

v̂n = argmax
vn

p(vn|X, Vn−1) = µθn(X, V̂n−1), (7)

where n = k + 1, . . . , N . Note that although v̂n may not
be the global optimum due to the terms 1

2 log sθn(X, Vn−1),
in our preliminary experiments, we find that using v̂n as ini-
tialization and then finetuning jointly VS to minimize L (ac-
cording to Eqn. 6) has very similar performance. In Theo-
rem 1 below, we show that under some assumptions on V ,
our forward prediction based on greedy maximization can
achieve the global optimum, which provides some insight
on the similar performance.
Theorem 1. Assume our ground-truth joint distribution
p(VN |X) is an elliptically unimodal distribution and BIN
converges to its optimal. Forward prediction based on
greedy maximization in Eqn. 7 achieves the global optimum.

Case 2 (Hybrid Inference): When vN /∈ V−S and V−S 6=
Vk for any k, one can first perform the (joint) general in-
ference for variables {vn|vn ∈ VS , n < q}, where vq is
the last variable (with the largest index q) in V−S , by iter-
ative FF and BP, and then perform one-pass forward pre-
diction for variables {vn|vn ∈ VS , n > q}. Doing this

could significantly cut down the time needed for predict-
ing {vn|vn ∈ VS , n > q}, since no BP and iterative pro-
cess is needed for them. For example, if VS = {v1, v3} and
V−S = {v2}, one can first perform general inference for v1
and then perform forward prediction for v3 (see Fig. 1(left)).
Similar to Theorem 1, we show in Theorem 2 that under
some assumptions on V , hybrid inference can also achieve
the global optimum.

Theorem 2. Assume our ground-truth joint distribution
p(VN |X) is an elliptically unimodal distribution and BIN
converges to its optimal. Hybrid inference can achieve the
global optimum for VS if the backward part achieves the
global optimum for {vn|vn ∈ VS , n < q}.

Elliptically unimodal distributions are a broad class of
distributions. We provide the definition and some properties
as well as the proof of the theorems above in Sec. 1 of the
Supplement.

Remark: Empirically BIN works well even though the
conditions in the theorems above do not necessarily hold.
Also note that although Case 1 and Case 2 assume the BN
structure in Eqn. 3, they can be naturally generalized to other
facetorization (BN structure). For example, in a general BN
structure, if there exists a topological order of variables in V
such that V−S = Vk (i.e., all variables in VS are descendents
of V−S), Case 1 can be applied similarly. See Fig. 1 for some
examples of both cases.

Composite Bidirectional Inference Networks
From BIN to Composite BIN: During inference of BIN we
may need to iteratively update VS via BP. To reflect this ef-
fect during training and tailor the model in a manner that
works well with the proposed inferential procedure (to fur-
ther improve the optimization landscape and speed up infer-
ence), composite BIN (CBIN) augments Eqn. 4 with com-
posite likelihood (CL) termsLj and uses the following train-
ing objective:

Lall = L(V |X;θ) + λc

J∑
j=1

Lj ,

Lj = L(V̂Sj , V−Sj |X;θ)− L(V−Sj |X;θ), (8)

V̂Sj ≈ argmin
VSj

L(VSj , V−Sj |X;θ), (9)

where Lj integrates the inference task of predicting VSj (Sj
is a subset of {1, . . . , N} specified by users) given (X, V−Sj)

into the training process. V̂Sj is computed in an inner loop
during each epoch by iteratively updating VSj through BP.
λc is a hyperparameter. Note that Eqn. 9 is an approximation
because the inner loop may not yield global optima. To gain
more insight, Lj can be written as

Lj = L(V̂Sj |X;θ) + L(V−Sj |X, V̂Sj ;θ)
− L(V−Sj |X;θ), (10)

L(V−Sj |X;θ) = − log p(V−Sj |X)

= − log

∫
p(V−Sj |X, VSj)p(VSj |X)dVSj .

Intuition for the Objective Function: The training pro-
cess of CBIN is summarized in Algorithm 1. Interestingly,
the last two terms in Eqn. 10 can be seen as the difference
between (1) the negative log-likelihood of V−Sj given X and
the inferred V̂Sj (which is smaller since V̂Sj contains infor-
mation from VSj) and (2) the negative log-likelihood of V−Sj
given only X (which is larger and serves as a baseline).
Hence minimizing the last two terms makes the network
aware that V̂Sj contains additional information and conse-
quently decrease the loss. On the other hand, the first term in
Eqn. 10 would update the network so that the prior and ini-
tialization provided to infer VSj can be closer to V̂Sj . From
another perspective, Lj can be seen as adapting the aug-
mented data (V̂Sj , V−Sj) according to the training process
to make the optimization landscape of VSj more friendly
to inference via BP (see the next section for more details
and experiments). It is also worth noting that in Eqn. 8,
Lj = L(V̂Sj |X, V−Sj ;θ) can be considered as a composite
likelihood (a generalized version of pseudolikelihood (Be-
sag 1974)) term (Lindsay 1988) given X if V̂Sj is replaced
with VSj . It is proven that adding CL terms does not bias the
learning of parameters (Lindsay 1988).

Configuration of VSj : One challenge, however, is that
there are 2N − 1 configurations of VSj , including all 2N − 1
terms of Lj during training is obviously impractical. In our
experiments, we let J = N − 1 and VSj = Vj = {vn}jn=1.
Doing this has the effect of both self-correction and improv-
ing the optimization landscape: (1) Self-correction: The in-
ner loop inferring V̂j given V \ Vj can be seen as searching
for the best path for correcting V̂j . (2) Optimization land-
scape: The generated V̂j is used as input for N − j subnet-
works; hence these N − 1 extra terms are sufficient to cover
N subnetworks and improve their optimization landscape.
For more details please refer to Sec. 7 of the Supplement.

Remark: As shown in the experiments below, the inclu-
sion of CL terms in CBIN not only improves the accuracy
and generalization but also leads to faster inference. We at-
tribute this to the preference of CBIN to learn smoother
(and consequently more generalizable) optimization land-
scape w.r.t. V (see the optimization landscape in Fig. 1 of the
Supplement and Fig. 2). Note that the marginal negative log-
likelihood L(V−Sj |X;θ) in Eqn. 8 can be approximated ef-

ficiently leveraging the properties of NPN (see Sec. 2 of the
Supplement for details). In Theorem 3 of the Supplement,
we prove that for single-layer NPN subnetworks, the ap-
proximation process can obtain the exact mean and variance
(diagonal entries of the covariance matrix) of p(V−Sj |X;θ).

Algorithm 1 Learning CBIN

1: Input: Data D = {(X(i), V (i)}Mi=1, training itera-
tions Tt, warmup iterations Tw, inference iterations Tin,
learning rate ρt, step size γt, initialized model parameter
θ = {(µθn(·), sθn(·))}Nn=1. A minibatch of size K for
each iteration is denoted as {(X(k), V (k))}k∈{i1,...,iK}.

2: for t = 1 : Tw do
3: Update θ ← θ − ρt

K

∑
k∇θL(V

(k)|X(k);θ) with L
in Eqn. 4 as a loss function.

4: end for
5: for t = 1 : Tt do
6: for j = 1 : J do
7: Initialize {V̂ (k)

Sj
} of the current minibatch for the

CL term Lj using Eqn. 7.
8: for tin = 1 : Tin do
9: Update {V̂ (k)

Sj
} via FF and BP: V̂ (k)

Sj
← V̂

(k)
Sj
−

γtin∇V̂ (k)
Sj

L(V̂ (k)
Sj

, V
(k)
−Sj |X

(k);θ).

10: end for
11: end for
12: Update parameters: θ ← θ− ρt

K

∑
k∇θLall with the

total loss Lall defined in Eqn. 8.
13: end for

Experiments
In this section, we first compare BIN and CBIN in toy
datasets to gain more insight about our models and then eval-
uate variants of BIN/CBIN and other state-of-the-art meth-
ods on two real-world datasets. In all tables below, we mark
the best results without retraining new models in bold and
the best results with or without retraining new models by
underlining.

Toy Inference Tasks
We start with toy datasets and toy inference tasks to show
that the composite likelihood terms in CBIN help shape the
function we learned to be smoother and consequently reduce
the number of local optima during inference. In the first toy
dataset, X is ignored and V = {v1, v2}. We generate 6 data
points {(v(i)1 , v

(i)
2)}6i=1 according to v2 = 3v1+1+ε, where

ε ∼ N (0, 1) and v1 is sampled from a uniform distribution
U(0, 1). We train BIN according to Eqn. 4 and CBIN ac-
cording to Eqn. 8 with J = 1 and VS1 = {v1} (see Sec. 6 of
the Supplement for details).

Fig. 2(a) and Fig. 2(b) show the µθ2(v1) learned by
BIN and CBIN, respectively, with the original training data
points. Correspondingly, Fig. 2(c) and Fig. 2(d) show the
loss surface of L with respect to VS = {v1} when infer-
ring v1 given v

(1)
2 (v(1)2 corresponds to the dashed line).

-1 -0.5 0 0.5 1
-2

-1

0

1

2

3

(a) BIN

-1 -0.5 0 0.5 1
-2

-1

0

1

2

3

(b) CBIN

-1 -0.5 0 0.5 1
0

2

4

6

8

(c) BIN

-1 -0.5 0 0.5 1
0

1

2

3

4

5

(d) CBIN
Figure 2: (a) and (b): µθ2(v1) learned by BIN and CBIN. (c) and (d): corresponding loss surface of L with respect to {v1} when
inferring v1 given v(1)2 in BIN and CBIN.

Table 1: 8 variables in the SHHS2 dataset.
v1 Physical functioning
v2 Role limitation due to physical health
v3 General health
v4 Role limitation due to emotional problems
v5 Energy/fatigue
v6 Emotional well being
v7 Social functioning
v8 Pain

During inference, BIN searches for the lowest point in the
loss surface of Fig. 2(c) and may be trapped in the poor lo-
cal optimum (e.g., the diamond point in Fig. 2(c)). In con-
trast, CBIN can alleviate this problem, as shown in Fig. 2(d),
where there is no poor local optimum. It would be interest-
ing to inspect v̂1 generated in the inner loop when training
CBIN. Fig. 2(b) plots augmented points (v̂1, v2) generated
in the last inner loop iteration as triangles. As can be seen,
the augmented points concentrate near a straight line and
hence help learn a smoother function µθ2(v1) from v1 to v2,
leading to a smoother loss surface that is more friendly to
gradient-based inference (shown in Fig. 2(d)). Besides this
toy inference task, we also examine a more complex toy
dataset where X is also considered and obtain similar results
(see Sec. 3.1 of the Supplement for details).

Experiments on the SHHS2 Dataset
Besides synthetic datasets, we also evaluate BIN and CBIN
on the sleep heart health study 2 (SHHS2) dataset. SHHS2
contains full-night Polysomnography (PSG) from 2,651
subjects. Available PSG signals include Electroencephalog-
raphy (EEG), Electrocardiography (ECG), and breathing
signals (airflow, abdomen, and thorax). For each subject, the
dataset also includes the 36-Item Short Form Health Sur-
vey (SF-36) (Ware Jr and Sherbourne 1992). SF-36 is a
standard survey that is widely used to extract 8 health vari-
ables (as shown in Table 1). Each of the 8 variables is rep-
resented using a score in [0, 100]. In the experiments, we
consider PSG as high-dimensional information X and the
8 scores {vn}8n=1 as attributes of interest. Since the scores
are based on subjects’ self-reported results and intrinsically
noisy, preprocessing is necessary. In particular, we use the
mean of each score over all subjects as the threshold to bina-
rize the scores into {0, 1}, where 0 indicates ‘unhealthy’ and
1 indicates ‘healthy’. Here X is dense, high-dimensional,

variable-length signals that consist of EEG spectrograms
Xe ∈ R64×l(i) , ECG spectrograms Xc ∈ R22×l(i) , and
breathing Xb ∈ R3×10l(i) , where l(i) is the number of sec-
onds for the i-th subject (in the range 7278 ∼ 45448).

We compare our models with the following baselines:
‘Prior Only’ (PO) refers to using only the prior part of the
trained BIN to directly output predictions without iterative
inference during testing (e.g., use µθ1(X) from the first sub-
network as predictions when VS = {v1} and V−S = {v2}).
‘Random Initialization’ (RI) refers to randomly initializ-
ing VS before iterative inference instead of using the prior’s
output during testing (e.g., during the inference for VS =
{v1} given V−S{v2}, use random initialization rather than
µθ1(X)). SPEN refers to the structured prediction energy
networks and eSPEN is its end-to-end variant (Belanger
and McCallum 2016; Belanger, Yang, and McCallum 2017).
SVAE refers to combining SVAE (Johnson et al. 2016;
Kingma and Welling 2013) and our method to enable BP-
based inference and avoid O(2N) networks (see the Supple-
ment for details). DNADE is the orderless and deep Neural
Autoregressive Distribution Estimation (NADE) (Larochelle
and Murray 2011) proposed in (Uria et al. 2016). It is
combined with the real-valued NADE (Uria, Murray, and
Larochelle 2013; Uria et al. 2016) for the regression task.
‘Retrain’ means retraining a model for that specific infer-
ence task (i.e., retraining an end-to-end NPN with X and
V−S as input and VS as output). Note that the original SPEN
and eSPEN can only predict V given X. We adapt them for
different inference tasks by resetting V−S to the given values
in each inference iteration (essentially learn a density esti-
mator f(V,X) and optimize maxVS f(VS , V−S ,X)). Please
refer to Sec. 6 of the Supplement for details on hyperparam-
eters and model training of BIN, CBIN, and all baselines.

Table 2 shows the accuracy of predicting different VS
given V−S when V = V8 (see the Supplement for addi-
tional results when V = V3) for BIN, CBIN, and the base-
lines, where the accuracy is averaged across all inferred
variable. As we can see: (1) BIN significantly outperforms
‘Prior Only’, verifying the effectiveness of the iterative in-
ference process. (2) BIN also outperforms ‘Random Initial-
ization’, which verifies the effectiveness of the initialization
provided by the prior part (e.g., µθ1(X) when VS = {v1}
and V−S = {v2}). (3) Furthermore, CBIN consistently out-
performs BIN, which means the CL terms (and inner loops

Table 2: Accuracy (%) for predicting VS given X and V−S = {vn}8n=1 \ VS in the SHHS2 dataset.
VS {v1, v3} {v4, v5} {v1, v3, v6, v7} {v2, v6, v7} {v3, v5, v8} {v4, v5, v6} {v4, v6, v7}
SPEN 63.78 70.21 64.29 65.72 59.84 66.51 70.26
eSPEN 64.39 71.13 64.22 65.63 61.17 66.92 69.95
SVAE 62.07 69.59 62.51 65.13 59.73 66.03 68.32
DNADE 69.83 74.32 67.58 68.88 64.77 68.15 72.39
PO 68.39 76.29 70.98 75.00 71.52 69.75 74.00
RI 68.08 68.06 66.26 67.22 63.48 65.80 66.62
BIN 75.31 79.07 73.48 75.00 72.55 74.36 76.11
CBIN 77.16 80.22 75.21 75.87 72.68 73.85 76.31
Retrain 75.92 79.65 74.94 76.04 72.24 73.58 75.74

Table 3: RMSE for predicting VS given X and V−S =
{vn}3n=1 \ VS in the Dermatology dataset.
VS {v1} {v2} {v1, v2} {v1, v3}
SPEN 0.0973 0.1310 0.1163 0.2464
eSPEN 0.0944 0.1243 0.1138 0.2401
SVAE 0.0998 0.1373 0.1236 0.2489
DNADE 0.0828 0.1179 0.1122 0.2321
PO 0.0979 0.1071 0.1113 0.2395
RI 0.0787 0.1301 0.1248 0.2333
BIN 0.0691 0.1087 0.1069 0.2292
CBIN 0.0643 0.1062 0.1011 0.2130
Retrain 0.0714 0.1059 0.1058 0.2271

Table 4: RMSE when VS = V for the Dermatology dataset.
VS {v1} {v1, v2} {v1, v2, v3}
SPEN - 0.1135 0.2148
eSPEN - 0.1120 0.2109
SVAE - 0.1132 0.2086
DNADE - 0.1185 0.2161
BIN - 0.1118 0.2010
CBIN - 0.1098 0.1967
Retrain 0.0950 0.1144 0.2059

during training) are helpful to shape the optimization land-
scape with respect to VS so that the iterative inference pro-
cess reaches better local optima (or even global optima). (4)
Interestingly in most cases, CBIN can even outperform a
new model trained for the specific VS and V−S possibly be-
cause CBIN (and BIN) can take into account the conditional
dependency among different variables while the specifically
retrained model cannot. (5) SVAE, DNADE, SPEN, and eS-
PEN perform poorly since they are not designed for arbitrary
inference tasks or fail to properly model conditional depen-
dencies. Besides, we also compare the accuracy of different
methods in forward prediction cases where VS = V with
different V . We find that SVAE, SPEN, and eSPEN achieve
similar or slightly better accuracy than the retrained specific
models while BIN and CBIN outperform all the above base-
lines (see Sec. 3 of the Supplement for more experimental
results).

Fig. 3(left) shows the number of inference iterations
needed to predict VS = {v1, v2} given V−S = {v3} versus
number of inner loop iterations during training (Tin in Al-
gorithm 1 of the main paper) with different λc. Fig. 3(right)
shows the corresponding accuracy versus Tin. The horizon-
tal lines show the number of inference iterations and accu-
racy for BIN. As we can see: (1) CBIN needs much fewer

0 50 100 150 200 250 300
Number of Inner Loop Iterations

100

200

300

400

500

N
um

be
r

of
 In

fe
re

nc
e

Ite
ra

tio
ns

0 100 200 300
Number of Inner Loop Iterations

71.8

71.9

72

72.1

72.2

72.3

A
cc

ur
ac

y
(%

)

Figure 3: Left: Number of inference iterations needed during
testing versus number of inner loop iterations during training
(Tin in Algorithm 1) with different λc. The horizontal line
the number for BIN (without Lj). Right: Accuracy versus
Tin. Similarly the horizontal line shows the accuracy of the
corresponding BIN.

iterations during testing if Tin is large enough to get better
estimates of VS during training. (2) CBIN consistently out-
performs BIN in a wide range of Tin. Results for other VS
(and V) are consistent with Fig. 3.

Experiments on the Dermatology Dataset
Besides classification tasks, we also evaluate our methods on
regression tasks using the Dermatology dataset, which con-
tains 12 clinical features (e.g., itching, erythema, age, etc.)
and 21 histopathological attributes (e.g., saw-tooth appear-
ance of retes) (Lichman 2013) of 366 subjects. In the exper-
iments, we use all 12 clinical features as X with ‘vacuoli-
sation and damage of basal layer’, ‘saw-tooth appearance of
retes’, and ‘elongation of the rete ridges’ as attributes of in-
terest (v1, v2, and v3). For details on hyperparameters and
model training, please refer to Sec. 6 of the Supplement.

Similar to the SHHS2 experiments, Table 3 shows the
Root Mean Square Error (RMSE) of predicting v1, v2, and
v3 with different VS for BIN, CBIN, baselines, and retrain-
ing a model for that specific inference task. Table 4 shows
the RMSE in forward prediction cases where VS = V with
different V . The results and conclusions are consistent with
those in the SHHS2 experiments.

Conclusion
In this paper, we propose BIN to connect multiple proba-
bilistic neural networks in an organized way so that each
network models a conditional dependency among variables.
We further extend BIN to CBIN, involving the iterative in-
ference process in the training stage and improving both ac-
curacy and computational efficiency. Experiments on real-
world healthcare datasets demonstrate that BIN/CBIN can

achieve state-of-the-art performance in the arbitrary infer-
ence tasks with a single model. As future work it would
be interesting to evaluate different factorizations for the
joint likelihood of variables and different distributions (e.g.,
gamma distributions) beyond Gaussians. It would also be in-
teresting to extend the models to handle hidden variables and
missing values.

Acknowledgments
The authors thank Xingjian Shi, Vikas Garg, Jonas Mueller,
Hongyi Zhang, Guang-He Lee, Yonglong Tian, other mem-
bers of NETMIT and CSAIL, and the reviewers for their
insightful comments and helpful discussion.

References
Archer, E.; Park, I. M.; Buesing, L.; Cunningham, J.; and
Paninski, L. 2015. Black box variational inference for state
space models. CoRR abs/1511.07367.
Bayer, J., and Osendorfer, C. 2014. Learning stochastic
recurrent networks. CoRR abs/1411.7610.
Belanger, D., and McCallum, A. 2016. Structured prediction
energy networks. In ICML, 983–992.
Belanger, D.; Yang, B.; and McCallum, A. 2017. End-to-
end learning for structured prediction energy networks. In
ICML, 429–439.
Besag, J. 1974. Spatial interaction and the statistical analysis
of lattice systems. Journal of the Royal Statistical Society B
192–236.
Chung, J.; Kastner, K.; Dinh, L.; Goel, K.; Courville, A. C.;
and Bengio, Y. 2015. A recurrent latent variable model for
sequential data. In NIPS, 2980–2988.
Fraccaro, M.; Sønderby, S. K.; Paquet, U.; and Winther, O.
2016. Sequential neural models with stochastic layers. In
NIPS, 2199–2207.
Gatys, L. A.; Ecker, A. S.; Bethge, M.; Hertzmann, A.; and
Shechtman, E. 2017. Controlling perceptual factors in neu-
ral style transfer. In CVPR, 3730–3738.
Gatys, L. A.; Ecker, A. S.; and Bethge, M. 2016. Image
style transfer using convolutional neural networks. In CVPR,
2414–2423.
Germain, M.; Gregor, K.; Murray, I.; and Larochelle, H.
2015. MADE: masked autoencoder for distribution estima-
tion. In ICML, 881–889.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014.
Explaining and harnessing adversarial examples. CoRR
abs/1412.6572.
Gregor, K.; Danihelka, I.; Graves, A.; Rezende, D. J.; and
Wierstra, D. 2015. DRAW: A recurrent neural network for
image generation. In ICML, 1462–1471.
Johnson, M.; Duvenaud, D. K.; Wiltschko, A.; Adams, R. P.;
and Datta, S. R. 2016. Composing graphical models with
neural networks for structured representations and fast infer-
ence. In NIPS, 2946–2954.
Kingma, D. P., and Ba, J. 2014. Adam: A method for
stochastic optimization. CoRR abs/1412.6980.

Kingma, D. P., and Welling, M. 2013. Auto-encoding vari-
ational bayes. CoRR abs/1312.6114.
Krishnan, R. G.; Shalit, U.; and Sontag, D. 2015. Deep
kalman filters. CoRR abs/1511.05121.
Larochelle, H., and Murray, I. 2011. The neural autoregres-
sive distribution estimator. In AISTATS, 29–37.
Le, Q. V., and Mikolov, T. 2014. Distributed representations
of sentences and documents. In ICML, 1188–1196.
Lichman, M. 2013. UCI machine learning repository.
Lin, W.; Khan, M. E.; and Hubacher, N. 2018. Varia-
tional message passing with structured inference networks.
In ICLR.
Lindsay, B. G. 1988. Composite likelihood methods. Con-
temporary Mathematics 80(1):221–239.
Quan, S. F.; Howard, B. V.; Iber, C.; Kiley, J. P.; Nieto, F. J.;
O’connor, G. T.; Rapoport, D. M.; Redline, S.; Robbins, J.;
Samet, J. M.; et al. 1997. The sleep heart health study:
design, rationale, and methods. Sleep 20(12):1077–1085.
Sesen, M. B.; Nicholson, A. E.; Banares-Alcantara, R.;
Kadir, T.; and Brady, M. 2013. Bayesian networks for
clinical decision support in lung cancer care. PloS one
8(12):e82349.
Sohn, K.; Lee, H.; and Yan, X. 2015. Learning struc-
tured output representation using deep conditional genera-
tive models. In NIPS, 3483–3491.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I. J.; and Fergus, R. 2013. Intriguing prop-
erties of neural networks. CoRR abs/1312.6199.
Uria, B.; Côté, M.; Gregor, K.; Murray, I.; and Larochelle,
H. 2016. Neural autoregressive distribution estimation.
JMLR 17:205:1–205:37.
Uria, B.; Murray, I.; and Larochelle, H. 2013. RNADE:
the real-valued neural autoregressive density-estimator. In
NIPS, 2175–2183.
Wang, H., and Yeung, D. 2016. Towards Bayesian deep
learning: A framework and some existing methods. TKDE
27(5):1343–1355.
Wang, H.; Shi, X.; and Yeung, D.-Y. 2016. Natural-
parameter networks: A class of probabilistic neural net-
works. In NIPS, 118–126.
Wang, H.; Shi, X.; and Yeung, D. 2017. Relational deep
learning: A deep latent variable model for link prediction.
In AAAI, 2688–2694.
Wang, H.; Wang, N.; and Yeung, D. 2015. Collaborative
deep learning for recommender systems. In SIGKDD, 1235–
1244.
Ware Jr, J. E., and Sherbourne, C. D. 1992. The MOS 36-
item short-form health survey (SF-36): I. conceptual frame-
work and item selection. Medical care 473–483.
Zhang, F.; Yuan, N. J.; Lian, D.; Xie, X.; and Ma, W. 2016.
Collaborative knowledge base embedding for recommender
systems. In KDD, 353–362.
Zhang, H.; Cissé, M.; Dauphin, Y. N.; and Lopez-Paz, D.
2017. mixup: Beyond empirical risk minimization. CoRR
abs/1710.09412.

