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Abstract

Over the past few years, there has been a resurgence of
interest in using recurrent neural network-hidden Markov
model (RNN-HMM) for automatic speech recognition (ASR).
Some modern recurrent network models, such as long short-
term memory (LSTM) and simple recurrent unit (SRU), have
demonstrated promising results on this task. Recently, sev-
eral scientific perspectives in the fields of neuroethology and
speech production suggest that human speech signals may be
represented in discrete point patterns involving acoustic events
in the speech signal. Based on this hypothesis, it may pose
some challenges for RNN-HMM acoustic modeling: firstly, it
arbitrarily discretizes the continuous input into the interval fea-
tures at a fixed frame rate, which may introduce discretization
errors; secondly, the occurrences of such acoustic events are
unknown. Furthermore, the training targets of RNN-HMM are
obtained from other (inferior) models, giving rise to misalign-
ments. In this paper, we propose a recurrent Poisson process
(RPP) which can be seen as a collection of Poisson processes
at a series of time intervals in which the intensity evolves ac-
cording to the RNN hidden states that encode the history of the
acoustic signal. It aims at allocating the latent acoustic events
in continuous time. Such events are efficiently drawn from
the RPP using a sampling-free solution in an analytic form.
The speech signal containing latent acoustic events is recon-
structed/sampled dynamically from the discretized acoustic
features using linear interpolation, in which the weight param-
eters are estimated from the onset of these events. The above
processes are further integrated into an SRU, forming our final
model, called recurrent Poisson process unit (RPPU). Experi-
mental evaluations on ASR tasks including ChiME-2, WSJ0
and WSJ0&1 demonstrate the effectiveness and benefits of the
RPPU. For example, it achieves a relative WER reduction of
10.7% over state-of-the-art models on WSJ0.

Introduction
Recently, recurrent neural network (RNN) has been success-
fully applied to diverse machine learning problems such as
automatic speech recognition (ASR) (Graves, r. Mohamed,
and Hinton 2013), machine translation (Bahdanau, Cho, and
Bengio 2015) and computer vision (Vinyals et al. 2015). Al-
though end-to-end encoder-decoder approaches are getting
more popular in ASR, the hybrid long short-term memory
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recurrent neural network hidden Markov model (LSTM RNN-
HMM) is still the dominant model used in industry (Yu and
Li 2018). It is beneficial for an acoustic model to capture
long-term dependencies of the observations at different times.
However, the sequential gates computation of LSTM limits
its parallelization potential. Simple recurrent unit (Lei and
Zhang 2017) and quasi-RNN (Bradbury et al. 2016), sim-
plify the implementation of LSTM-RNN, and increase the
speed of computation for each processing step by dropping
the connections between the hidden states and the LSTM
gates, allowing them to be computed in parallel.

The hybrid RNN-HMM in acoustic modeling is essen-
tially a generalized version of a dynamic Bayesian network
(DBN), which is usually characterized by discretizing the
time series data and capturing the dependency of those dis-
cretized items. According to the research in speech pro-
duction and neuroethology, human speech signals may be
encoded in point patterns involving acoustic events in the
speech signal and neural spikes in the brain (Stevens 2000;
Esser et al. 1997). Such points in time are referred to as
acoustic event landmarks in (Stevens 2002). Based on this
hypothesis, it may pose some challenges for RNN-HMM
acoustic modeling: firstly, it arbitrarily discretizes the con-
tinuous input into the interval features at a fixed frame rate,
which may introduce discretization errors and have a negative
impact on the model performance accordingly; secondly, the
occurrences of such acoustic events are unknown and such
data are unavailable. Further more, the training targets of
RNN-HMM are usually obtained from the recognition results
of other (usually inferior) DBN models and misalignments
are inevitable.

On the other hand, the temporal point process is a pow-
erful mathematical tool to describe the latent mechanisms
governing the occurrences of observed random events. It is a
random process whose realization consists of a sequence of
isolated events with their time-stamps. Due to their generality,
point processes have been widely used for modeling phenom-
ena such as earthquakes (Hawkes 1971a), human activities
(Malmgren et al. 2008), financial data (Bacry et al. 2015),
context-aware recommendations (Du et al. 2015), etc. A com-
mon property of the problems above is that the precise event
time intervals can carry important information about the un-
derlying dynamics, which otherwise are not available from
the sequence of interval features that are evenly sampled from
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the continuous signal. Major research in this area focuses on
exploring the observed event data to model the underlying
dynamics of the system, while our work attempts to deal with
the situation where acoustic events are not available/observed
even during training.

In this paper, we develop a deep probabilistic model called
recurrent Poisson process unit (RPPU) to deal with the afore-
mentioned problems. The hybrid ASR system under the
above hypothesis can be factored into three steps:
• Allocate the training acoustic events localized in time at the

HMM state level to better align with the training targets.
• Reconstruct/sample a series of acoustic features from the

interval features originally sampled at a fixed frame rate
from the allocated acoustic events.

• Follow the traditional ASR processing procedure using the
newly reconstructed acoustic features as additional inputs.
The first step is achieved by constructing a recurrent Pois-

son process (RPP), which consists of a collection of homoge-
neous Poisson processes (Kingman 1992) at a series of time
intervals. In the proposed point process, the intensity func-
tion is determined by an RNN hidden state encoding the past
history of the acoustic signal. Sampling from intensity-based
models is usually performed via a thinning algorithm(Ogata
1981), which is computationally expensive. Our method is
sampling-free and it provides a solution in an analytical form
which ensures computational efficiency. In the second step,
the better aligned acoustic features are dynamically recon-
structed through a linear interpolation in which the weight
parameters are estimated from the acoustic events drawn
from the RPP. Finally, those estimated acoustic features are
provided to an RNN as additional input to perform the HMM
state prediction in a traditional way.

The objective function of RPPU is designed to strike a
balance between the generation of arrival times of the la-
tent acoustic events for clean training data and encoding
sufficient uncertainty to capture the variability caused by
the discretization errors and misalignments. Notably, RPPU
can be trained with the standard backpropagation through
time (BPTT) (Werbos 1990). The experiments on CHiME-2,
WSJ0 and WSJ0&1 show that our new model consistently
outperforms the conventional LSTM, SRU and quasi-RNNs.

Background and Related Work
Modeling acoustic HMM states with RNN
A hybrid RNN-HMM ASR system (Graves, Jaitly, and
Mohamed 2013) consists of an RNN estimating posterior
probabilities for HMM states of context-dependent phones
conditioned on the acoustic input. Typically, for a sequence
of training examples [(xt1 ,yt1), (xt2 ,yt2), ..., (xtM ,ytM )]
with xti ∈ Rn, yti ∈ Rk, for 1 ≤ i ≤ M , the acoustic
feature xti is given as inputs to the network, while the vector
yti denotes the ground truth and is represented by a one-
hot vector of K context-dependent HMM states. It can be
represented by the following two equations:

hti = Gθ(xti ,hti−1) (1)

ŷti = softmax(Wyhti + by) (2)

where hti ∈ Rr describes the hidden state. The first equation
defines the state transition mapping, in which the hidden state
hti is a nonlinear function of the current input xti and the
previous hidden state hti−1

and θ is the parameter set of G.
Wy and by are the weight matrix and the bias of the output
layer respectively. The output mapping usually adopts the
softmax function to calculate the predictions ŷti . In this sense,
the RNN can be viewed as the “state classifier” optimized by
minimizing the negative log-likelihood or cross-entropy:

− logP (Y|X) = −
M∑
i=1

K∑
k=1

yti,k log ŷti,k , (3)

where both the lengths of the input sequence X and the target
context-dependent HMM state sequence Y are M ; the total
number of context-dependent HMM states is K and they are
usually generated by forcefully aligning the training utterance
with its transcription using an inferior acoustic model such as
a GMM-HMM. The ultimate goal of the hybrid ASR system
is to generate the most likely words or phoneme sequence.
This is done by running the Viterbi algorithm (Forney 1973)
within the HMM framework.

One major limitation of hybrid acoustic modeling is that
training targets are generated from a family of dynamic
Bayesian network models, e.g., GMM-HMM and RNN-
HMM, and the arbitrary discretization of the continuous
acoustic signal could result in mis-alignments. Nonetheless,
the capability of handling such uncertainty only comes from
the conditional output probability density given the determin-
istic transition function of a standard RNN. To effectively
deal with this issue, the acoustic RNN model must be capable
of approximating the arrival time of each training target and
reconstructing/sampling the acoustic features dynamically
based on the estimated arrival time, and this is the main focus
of our model.

Poisson Process
A Poisson process is a temporal point process defined in
continuous time, in which the inter-arrival times are drawn
i.i.d from an exponential distribution. It has a strong renewal
property that the process can probabilistically restart at each
arrival time, independently of the past. This enables us to
describe the probabilistic behavior of the process via the
intensity function λ(t), which is a non-negative function.
Within a small interval [t, t+dt], the probability of an arrival
is λ(t)dt.

By considering a sequence of arrival times of acoustic
landmarks L = {t1, t2, . . . , tN} sampled from a Poisson
process P over an interval [0, T ], we have:

L ∼ P(g(λ(t)) (4)

∆ti = ti − ti−1 ∼ g(λ(t)) (5)

where g is the exponential density function; ∆ti is the inter-
arrival time. We place the first landmark at time 0 for simplic-
ity, and thus t0 = 0. Given the observation of the previous
landmark at time ti−1, the probability that no landmark oc-

curs up to time t since ti−1 is P(ti > t) = e
∫ t
ti−1

−λ(t)dt
.
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Then, the probability that the first landmark lies in the in-
terval [ti, ti + dt] since ti−1 is computed as the product of
P(ti > t) and λ(ti)dt, leading to the corresponding density
function:

fi(t) = λ(t)e
∫ t
ti−1

−λ(t)dt
(6)

By the strong renewal property, the likelihood of the whole
arrivals L over an interval [0, T ] takes the form:

P (L|λ(t)) = P(tN+1 > T )×
N∏
i=1

fi(ti)

= e
∫ T
0

−λ(t)dt
N∏
n=1

λ(tn)

(7)

where P(tN+1 > T ) is the probability that no landmark is
observed in the interval (tN , T ]. It may not be tractable as an
integral over the intensity function does not always have an
analytic expression. But it is not the case for a homogeneous
Poisson process with a constant intensity.

Related Work
Temporal point processes have been a principled framework
for modeling phenomena on an event-by-event basis across a
wide range of domains. It has originally been used for model-
ing earthquakes (Hawkes 1971b; 1971a) in seismology. More
recently, in social network, a Hawkes process has been used
to model timing and rich features of social interactions (Zhou,
Zha, and Song 2013); in human activity modeling, Poisson
Processes have been applied to model the inter-arrival time
of human activities (Malmgren et al. 2008).

A major limitation of these existing works is that they of-
ten make strong assumptions about the generative processes
of the event data, which may not be well-suited for real world
problem. Therefore, most of the existing works focus on
enhancing the flexibility of point process models, e.g., a non-
parametric Bayesian approach of point processes have been
explored in (Teh and Rao 2011); (Mei and Eisner 2017) ex-
tended the multivariate Hawkes process (Hawkes 1971a) to
a neurally self-modulating multivariate point process using a
continuous-time LSTM. Similarly, (Du et al. 2016) proposed
a model based on marked temporal point process that models
the event timings and the markers with the help of an LSTM.
However, these methods focus only on modeling the observ-
able (not latent) events, our proposed work try to develop
a framework which explicitly models acoustic events as la-
tent variables, consequently producing better phoneme-level
alignment and leading to better ASR performance.

The closest work to ours in ASR is (Jansen and Niyogi
2009), where an acoustic model based on marked Poisson
process was proposed for a sub-task of event-based ASR.
This subtask requires the speech signal to be segmented prior
to acoustic modeling. Therefore, the timings of the acoustic
events are provided during training and the model parameters
of intensity function are learned by simply using maximum
likelihood estimation (MLE). In contrast, the annotations of
such acoustic events are not available in our setting; hence
directly supervised learning via MLE is not applicable for
our task.

Recurrent Poisson Process Unit
Problem Formulation
Let us consider a time interval [0, tN ], where time is dis-
cretized into N frames of duration 10ms. Given a se-
quence of acoustic features X = {xt1 ,xt2 , ...,xtN }, our
goal is to approximate a sequence of arrival times L̃ =
{t̃1, t̃2, . . . , t̃N} so that a new sequence of acoustic features
X̃ = {x̃t̃1 , x̃t̃2 , ..., x̃t̃N } can be estimated which should align
better with the given targets Y = {yt1 ,yt2 , ...,ytN } in terms
of resolution and precision, and a more robust acoustic model
can be learned from these newly estimated training samples.

Recurrent Poisson Process
A recurrent Poisson process (RPP), consisting of a collection
of homogeneous Poisson processes (Kingman 1992) for a
series of time intervals, is a special type of temporal point
process, in which the intensity function is determined by an
RNN hidden state encoding the history of an acoustic sig-
nal. One may be tempted to learn the temporal point process
simply using maximum likelihood estimation (MLE). Unfor-
tunately, the annotation of the latent acoustic events in the
acoustic speech signal is not available; hence direct super-
vised learning via MLE is not possible. Our RPP addresses
this challenge by modeling these latent acoustic events as
latent variables, which are then used as part of the generative
process that is linked to the training targets.

Generate Timings for a Recurrent Poisson Process As-
sume that we are given N intensities {λt1 , λt2 , . . . , λtN }, and
a sequence of input features {xt1−d

, . . . ,xt1 ,xt2 , . . . ,xtN } ,
in which d context frames are padded to the left. Suppose the
starting acoustic landmark is at time t1−d and it follows a ho-
mogeneous Poisson process with intensity λt1 at the interval
[t1−d, 2t1 − t1−d] which starts at time t1−d and is centered
at t1. We will try to obtain the time estimate t̃1 of the first
acoustic landmark, and then repeat the procedure to obtain
the whole L̃ = {t̃1, t̃2, . . . , t̃N}. To be more specific, given
the (i− 1)-th acoustic landmark at the estimated time t̃i−1

and an interval [t̃i−1, 2ti − t̃i−1], the probability density of
the next landmark being in this interval can be written as:

f∗i (t) =
fi(t)∫ 2ti−t̃i−1

t̃i−1
fi(t)dt

=
λtie

−λti
(t−t̃i−1)

1− e−2λti
(ti−t̃i−1)

. (8)

Then we can estimate the time for the i-th landmark as its
expected value in following closed- form solution:

t̃i =

∫ 2ti−t̃i−1

t̃i−1

tf∗i (t)dt

=2ti − t̃i−1 +
1

λti
− 2(ti − t̃i−1)

1− e−2λti
(ti−t̃i−1)

(9)

Generally, the aforementioned point process can be factored
into N independent homogeneous Poisson processes. For the
i-th sub-process with intensity λti , the arrival sub-sequence
Li is drawn:

Li ∼ Pi(g(λti)) . (10)
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If it has only one single arrival and Li = {ti}. Then, for a
sequence of observations L = {L1, L2, . . . , LN}, its likeli-
hood is the following joint probability density:

P (L|λt1 , λt2 , . . . , λtN ) =

N∏
n=1

P (Li|λt1) (11)

where
P (Li|λt1) = λtie

−λti
(ti−ti−1) . (12)

Conditional Intensity Function for a Recurrent Poisson
Process In the neural spiking modelling (Snoek, Zemel,
and Adams 2013), the intensity function of the neural spikes
is usually conditioned on the external covariate. In a similar
spirit, we determine our intensity function using the hidden
state h̃ti of an RNN, which encodes the temporal dependen-
cies among the past history of the acoustic signalX . To avoid
the explosion of 1

λti
, we define the inverse of the intensity

function as:
1

λti
= cσ(φ(h̃ti)) + ε (13)

such that the inverse of the intensity function is upper
bounded by c and the intensity function is upper bounded
by 1

ε . This is important as it limits the search space during
optimization when φ(·) are neural networks, which transform
the hidden states into a scalar.

Recurrent Poisson Process Unit: Integrate
Recurrent Poisson Process into RNN
The arrival time sequence of the acoustic landmarks gen-
erated from a recurrent Poisson process is on the real line.
However, we are only given the discretized input sequence.
The missing input vectors are reconstructed by linear interpo-
lation as follows:

x̃t̃i =

N∑
n=1

xtn max(0, 1− |t̃i − n|) . (14)

This enables the loss gradients to reach both the inputs and the
estimated arrival times from the recurrent Poisson process.

In this paper, we use simple recurrent unit (Lei and Zhang
2017) to implement RNN. SRU simplifies the architecture of
LSTM and dramatically reduces the computational time by
dropping the connections between its hidden states and gates
so that computation at the gates can be done in parallel.

Below are the updating formulas of recurrent Poisson pro-
cess unit.

[
r̂ti , f̂ti , ĉti

]
= Wx

[
xti , x̃t̃i

]
+ b (15)

rti = σ(r̂ti) (16)

fti = σ(f̂ti) (17)
cti = fti � cti−1 + (1− fti)� ĉti (18)

hti = rti � tanh(cti) + (1− rti)�Wh

[
xti , x̃t̃i

]
(19)

where rti are the reset gate outputs; fti are the forget gate
outputs; cti are the memory cell outputs; Wx and Wh are
the weight matrices; b are the gate bias vectors; hti are the

hidden state outputs; any quantity with a ‘hat’ (e.g., ĉti ) is the
activation value of the quantity before an activation function
is applied; � is the element-wise multiplication operation; σ
is the sigmoid function.

Learning
Our design of the loss function aims at striking a balance
between the generation of arrival times of the latent acoustic
events for clean training data and encoding sufficient uncer-
tainty to capture the variability caused by the discretization
errors and misalignments.

We use the standard Poisson process as the prior for the
recurrent Poisson process to restrict the complexity of the
approximated recurrent Poisson process. We measure the dis-
tance between the recurrent poisson process and the standard
Poisson process by Kullback–Leibler divergence in terms of
the inter-arrival time distribution. The inter-arrival time dis-
tribution for the i-th sub-process is defined as an exponential
distribution g(λti). Since all these distributions are indepen-
dent, we can enjoy the additive property of KL divergence of
these two processes:

N∑
i=1

KL(gs(λ = 1)||g(λti)) =

N∑
i=1

(λti − log(λti)− 1)

(20)
where gs(λ = 1) is the inter-arrival time distribution for a
standard Poisson process.

Although we assume the original arrival times of land-
marks, {1, 2, . . . , N}, are noisy, the negative likelihood of
this “incorrect” time sequence can be a desirable regularizer
to avoid overfitting in noisy conditions.

As such, the total loss is the sum of the cross-entropy
loss, negative log likelihood of noisy arrival time and the KL
divergence between the underlying recurrent Poisson process
and the standard process:

− logP (Y|X)− α log(P (L|λt1 , λt2 , . . . , λtN ))

+ β

N∑
i=1

KL(gs(λ = 1)||g(λti)))
(21)

Since the negative log likelihood terms and the KL terms
has exactly the same form in term of optimization. The final
objective can be written as:

− logP (Y|X) + γ

N∑
i=1

(λti − log(λti)) (22)

where γ is the weight for the regularization term. We adopt
the backpropagation through time (BPTT) for joinly training
both recurrent Poisson process and recurrent Poisson process
Unit.

Experiments
Datasets
We evaluated the proposed RPPU on three ASR corpora:
ChiME-2 (Vincent et al. 2013), WSJ0 (Garofolo et al. 1993)
and WSJ0&1 (Garofolo et al. 1993; Consortium and others
1994).
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Table 1: Model Configuraions for all datasets and the training
time for CHiME-2. L: number of layers; N: number of hidden
states per layer; P: number of model parameters; T: Training
time per epoch (hr).

Model L N P T

LSTM 3 2048 130M 0.71
SRU 12 2048 156M 0.32
Quasi-RNN 12 1024 117M 0.22
RPPU 12 1024 142M 0.37

CHiME-2 CHiME-2 corpus is a medium-large vocabulary
corpus, which was generated by convolving clean Wall Street
Journal (WSJ0) utterances with binaural room impulse re-
sponses (BRIRs) and real background noises at signal-to-
noise ratios (SNRs) in the range [-6,9] dB. The training set
contains about 15 hours of speech with 7138 simulated noisy
utterances. The transcriptions are based on those of the WSJ0
training set. The development and test sets contain 2460 and
1980 simulated noisy utterances, respectively. The WSJ0 text
corpus, consisting of 37M words from 1.6M sentences, is
used to train a trigram language model with a vocabulary size
of 5k.

WSJ0 WSJ0 is a clean speech corpus recorded in a clean
environment using close microphones. The standard WSJ0
si-84 training set with 7138 clean utterances was used for
acoustic modeling. The evaluation was performed on eval92-
5k which is a 5k-vocabulary non-verbalized test set, and the
si-dt-05 dataset was used as the development set. The 5k
trigram language model used for evaluation was trained from
the WSJ0 text corpus.

WSJ0&1 WSJ0&1 is a complete Wall Street Journal
speech corpus, which involves speech data from both WSJ0
and WSJ1. The training set WSJ0&1 si-284 with 36515 ut-
terances contains approximately 80 hours of speech, 95% of
which was used for training. The rest was used as the devel-
opment set. The evaluation of WSJ0&1 was performed on the
dev93-20k and eval93-20k test sets, both of which are 20k
open-vocabulary non-verbalized test sets. The evaluation was
performed with a 20k trigram language model trained from
the transcription of WSJ0&1 si-284. We report the speech
recognition performance in terms of word error rate (WER).

Feature Extraction and Preprocessing

Acoustic hidden Markov models (HMM) based on Gaussian-
mixture model (GMM), LSTM, SRU and quasi-RNN were
built. GMM-HMM models employed fMLLR-adapted (Gales
and others 1998) 39-dimensional MFCC features. All neural-
network-based models used 40-dimensional Mel-filterbank
coefficients (Biem et al. 2001) without their derivatives. In-
puts of all neural networks consisted of the current frame
together with its 4 right contextual frames. We performed
per-speaker mean and variance normalization for the input to
all the neural network models.

Table 2: WER (%) on test set of CHiME-2.
Model WER

DNN Kaldi s5 29.1
LSTM 26.1
SRU 26.2
Quasi-RNN 26.1
RPPU 24.4

Training Procedure
GMM-HMM employed fMLLR-adapted 39-dimensional
MFCC features and was trained using the standard Kaldi
s5 recipe (Povey and others 2011). They were then used to
derive the state targets for subsequent RNN training through
forced alignment for ChiME-2, WSJ0 and WSJ0&1. Specifi-
cally, the state targets were obtained by aligning the training
data with the DNN acoustic model through the iterative pro-
cedure outlined in (Dahl et al. 2012).

All RNNs were trained by optimizing the categorical cross
entropy using BPTT and SGD. Prior to optimization, all
the weight matrices were initialized following a LeCun Nor-
mal distribution introduced in (Klambauer et al. 2017). We
applied a dropout rate of 0.1 to the connections between re-
current layers. The learning rate for LSTM/SRU, Quasi-RNN
and RPPU models was initially set to 0.25, 0.2, and 0.07
respectively. We decayed the learning rate until it went below
1× 10−6.

Models We adopted SRU as the building block to construct
the proposed RPPU and compare our proposed model with
the following baselines: (i) The LSTM with three stacked
layers; (ii) SRU with 12 stacked layers; (iii) quasi-RNN with
12 stacked layers and the highway connection (Lei and Zhang
2017).

The LSTM has only three stacked layers because we did
not observe WER reduction by stacking more layers. To
ensure similar numbers of model parameters for different
models, we set the number of hidden states per layer to 2048
for both LSTM and SRU, and 1024 for both quasi-RNN and
RPPU. The filter width of quasi-RNN was 3, which ensured
a similar number of parameters for the RPPU. Our RPPU
had 2 context frames padded to the left of the input and
two previous hidden states padded to the left of the input
of each hidden RPPU layer. For simplicity, in the intensity
function of RPPU, c was set to 100 and ε was set to 0.01
(these two hyperparameters can be tuned to further improve
performance).

Results and Analysis
Results on CHiME-2 Table 1 shows the model configura-
tions of the baseline models and the new RPPU model for all
datasets. The training time per epoch for CHiME-2 is also
provided. The timing experiments used the Theano package
and were performed on a machine running the Ubuntu op-
erating system with a single Intel Core i7-7700 CPU and a
GTX 1080Ti GPU. Each model took around 25 iterations,
and their average running time is reported. We can see that
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Table 3: Detailed WER (%) on the CHiME-2 test set.
Model -6 Db -3 Db 0 Db 3 Db 6 Db 9 Db

LSTM 42.4 33.5 26.7 21.1 17.3 15.3
SRU 42.5 34.0 26.2 22.2 17.4 15.1
Quasi-RNN 42.1 32.8 27.8 20.8 17.5 15.6
RPPU 39.9 31.1 24.9 20.3 16.0 13.2
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Figure 1: WER on Development set of CHiME-2 by varying
the weight of the regularization term

SRU is much faster than LSTM and our RPPU runs almost
as fast as SRU while having a similar number of parameters.

Table 2 shows the word recognition performance of the
baseline models and the new RPPU model for CHiME-2.
Firstly, we can see that all of our RNN baselines achieve
a similar WER. These baselines perform much better than
the DNN baseline from Kaldi s5. Our proposed RPPU per-
forms the best among all the candidates in terms of WER,
outperforming the RNN baselines by about 1.7% absolute.
We also report the detailed WERs as a function of the SNR
in CHiME-2 shown in Table 3. For all SNRs, the RPPU
outperforms other models by a large margin. This suggests
that incorporating the recurrent Poisson process into RNN
structures lends itself to the model’s robustness.

To validate the effectiveness of the regularization term in
RPPU for CHiME-2, we varied its weight γ to find the best
configuration, as can be seen in Figure 1. We obtained the
best performance in the development set when the weight γ
is around 0.08. We hence set γ to 0.08 as our final configu-
ration based on this observation. These results indicate the
effectiveness of our proposed objective function.

Analyze the Property of RPP Here, we took the generated
time points from the recurrent Poisson process (RPP) of the 5-
th layer of RPPU to perform both qualitative and quantitative
analyses.

The standard Poisson process is the prior of the RPP in
RPPU; hence we used the distance between the estimated
value and its mean to approximately measure RPP’s flexibil-
ity. To better understand how RPP works, we randomly took
two utterances “423c02162” and “423c02166” at 9DB and
-3DB SNR respectively, from the development set and gener-
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Figure 2: Arrival times produced by RPPU at each time steps.
The yellow points represent the mean of a standard Poisson
process. The blue pluses and red stars represent the generated
time points estimated from the randomly chosen utterance at
9DB and -3DB SNR, respectively.

Table 4: Similarity with the ground-truth phoneme-level align-
ment for our baseline and estimated alignment using RPP on
development set of CHiME-2

Alignment type Similarity(%)

Baseline alignment 55.5
Estimated alignment using RPP 64.7

ated the associated arrival times from the RPP. We display the
estimated time points associated with acoustic events at two
different SNRs in Figure 2. We can see that as the noise level
increases, the estimated time points go towards the mean of a
standard Poisson process. This suggests that RPPU can pro-
duce the time points based on the noise level: less flexibility
is allowed for RPP’s point generation when the data is too
noisy.

To evaluate how these generated time points can be helpful
in better aligning the acoustic inputs with the acoustic HMM
states, we conducted the analysis on the development set of
CHiME-2. Notice that the noisy CHiME-2 data is generated
from the clean WSJ0 data; thus the ground-truth alignments
of the development set of WSJ0 serve also as the ground-truth
alignments for the corresponding development set of CHiME-
2 data. Here, the ground-truth phoneme-level alignment for
development set of CHiME-2 is obtained by forced align-
ing the development set si-dt-05 of WSJ0 using the WSJ0
fMLLR-based DNN acoustic model.

We firstly obtained the baseline frame-level alignment by
force aligning the CHiME-2 noisy development set using
CHiME-2 DNN, which is the model we used to derive the
training labels of CHiME-2 RNNs. It is then transformed to
phoneme-level alignment, serving as our baseline phoneme-
level alignment. We then used the generated time points
from RPP to obtain an estimated phoneme-level alignment by
replacing the integer time indices of the baseline frame-level
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Figure 3: In the text grids, the first tier represents the ground-truth alignment generated from the clean utterance of WSJ0. The
second tier represents our baseline alignment generated from the noisy utterance of CHiME-2, and the last tier denotes the
corresponding estimated alignment using RPP. The blue line and the yellow line in the middle spectrogram represents pitch and
intensity, respectively.

Table 5: WER (%) on evaluation set eval92-5k of WSJ0.
Model WER

DNN (Chen and Mak 2015) 3.2
LSTM 2.8
SRU 2.8
Quasi-RNN 2.8
RPPU 2.5

alignment with such time points and then transforming it to
the phoneme-level alignment. We compared it with both the
ground-truth and the baseline alignment on phoneme-level to
see how RPP works.

We define the similarity between two alignments by calcu-
lating the percentage of their overlaps in time. The similarity
with the ground-truth alignment for the baseline and the es-
timated alignment using RPP are shown in Table 4. We can
see that the similarity of estimated alignment achieves 9.2
% absolute gains. This demonstrates RPPU’s capability in
automatically aligning the acoustic inputs with the HMM
state targets.

Apart from the quantitative analysis, we show one example
using Praat (Boersma and others 2002) to better understand
how RPPU works. This example is the partial alignment
of the randomly chosen utterance “050c01017” within the
duration of the first 0.47 seconds. As shown in Figure 3, the
third tier, which corresponds to the estimated alignment, is
aligned much better with the ground-truth alignment shown
in the first tier than the baseline alignment in the second tier.
Interestingly, it seems that the first boundary in the textgrids
can be determined by the intensity in the yellow line, and that
the right boundary of ’F’ can be determined by the rising of
the pitch. The estimated alignment fits better with the clean
alignments in terms of those two boundaries. This might
suggest that RPPU is capable of predicting the arrival of
some acoustic events from some traits of the audio signal.

Results on WSJ0 To evaluate how RPPU behaves in a
clean condition, we applied our method to WSJ0 which
contains the clean utterances from which the CHiME-2 cor-

Table 6: WER (%) on evaluation sets of WSJ0&1.
Model dev93-20k eval93-20k

LSTM 7.4 6.8
SRU 7.5 6.8
Quasi-RNN 7.4 7.0
RPPU 6.9 6.2

pus was derived. We used the same model configurations of
CHiME-2 for all RNN models. From Table 5, we can observe
that all three RNN baseline systems using Mel-filterbank fea-
tures achieve a WER of 2.8%. These results are comparable
to the prior work using DNN (Chen and Mak 2015). Our
RPPU achieves the best WER of 2.5%, yielding 10.7% rela-
tive performance gain over the other RNN baseline systems.

Results on WSJ0&1 We also conducted experiments on
a larger corpus, WSJ0&1. The same model configurations
of CHiME-2 were applied on all RNN models in WSJ0&1.
The recognition results are shown in Table 6. We can see that
our best baseline LSTM achieves WER of 7.4% and 6.8%
and our RPPU gives the lowest WER of 6.9% and 6.2% on
dev93-20k and eval93-20k test sets, respectively. Overall, the
RPPU achieves 6.8% and 9.1% relative WER reductions over
the best LSTM baseline system on the two test sets.

Conclusion
We propose a novel model that can address hybrid acoustic
modeling by incorporating the proposed recurrent Poisson
process (RPP) into a recurrent neural network (RNN). We
show that our model can generate much better alignments
while performing the HMM state modeling. Our experiments
on CHiME-2, WSJ0 and WSJ0&1 show that our method
achieves much better results than several RNN baselines in
ASR.
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