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Abstract

Traditional federated learning (FL) algorithms, such as Fe-
dAvg, fail to handle non-i.i.d data because they learn a global
model by simply averaging biased local models that are
trained on non-i.i.d local data, therefore failing to model the
global data distribution. In this paper, we present a novel
Bayesian FL algorithm that successfully handles such a non-
i.i.d FL setting by enhancing the local training task with an
auxiliary task that explicitly estimates the global data distri-
bution. One key challenge in estimating the global data dis-
tribution is that the data are partitioned in FL, and there-
fore the ground-truth global data distribution is inaccessi-
ble. To address this challenge, we propose an expectation-
propagation-inspired probabilistic neural network, dubbed
federated neural propagation (FedNP), which efficiently es-
timates the global data distribution given non-i.i.d data par-
titions. Our algorithm is sampling-free and end-to-end dif-
ferentiable, can be applied with any conventional FL frame-
works and learns richer global data representation. Experi-
ments on both image classification tasks with synthetic non-
i.i.d image data partitions and real-world non-i.i.d speech
recognition tasks demonstrate that our framework effectively
alleviates the performance deterioration caused by non-i.i.d
data.

1 Introduction
Federated learning (FL) is an increasingly more impor-
tant machine learning paradigm where many clients jointly
train a powerful global model with cross-silo training data.
The major target of FL is to utilize the massive data cre-
ated and collected by different clients while obeying pri-
vacy protection regulations such as the European Union’s
General Data Protection Regulation (GDPR) (Voss 2016).
The most representative FL algorithm is FederatedAverag-
ing (FedAvg) (McMahan et al. 2017a), which successfully
trains a powerful global model while keeping training data
on each local client (i.e., each mobile phone). Thanks to
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its feasibility and effectiveness, FedAvg has been success-
fully adopted in many applications, such as speech recog-
nition (Tan et al. 2021) and language modeling (McMahan
et al. 2017b). Recently, more and more FL researchers have
turned their attention to a more practical setting where the
data distributions are non-i.i.d (Zhu et al. 2021); in practice,
a federation usually consists of different clients from diverse
sources whose data distributions are intrinsically distinct. In
such non-i.i.d settings, typical FL algorithms often fail to
achieve reasonable performance.

Taking a simple polynomial curve fitting task as an exam-
ple, as shown in Figure 1(a), our goal is to train a model that
can fit the data points sampled from a polynomial function.
To simulate an extremely non-i.i.d federated data partition,
the data points are split into three groups with disjoint ranges
of x-coordinates, denoted as X = {Xk}3k=1. Three feder-
ated clients, each training a local model (θ = {θk}3k=1),
then collaboratively learn a global model via FL algorithms,
e.g., FedAvg. The result shows that while the local models
successfully fit their local data in the local training steps,
the final prediction is nearly random for test data points.
The reason is that the averaging of defective local models
adopted by FedAvg cannot provide a global model with suf-
ficient capacity to describe the entire data distribution (see
Figure 1(b)). With such insight, we then approach non-i.i.d
FL from a new perspective by explicitly modeling a latent
global data distribution to enforce local models to have a
global view as an auxiliary task.

Existing works in Bayesian federated learning (BFL) (Al-
Shedivat et al. 2020; Chen and Chao 2020) focus on directly
inferring the global model distribution by aggregating over
local model distributions, consequently failing to capture a
latent global data distribution. A BFL framework augmented
with latent global data distribution should offer several ad-
vantages, including (1) a lower dimensional representation
of input data uncertainty, caused by limited access to global
data ; and (2) a greater expressive power to capture the com-
plex dependency underlying the input data across clients
than conventional BFL frameworks.

Despite the enormous successes of Bayesian learning and
deep learning, it is still challenging to infer such a global
data distribution. The reason is that in non-i.i.d federated
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Figure 1: Toy example on polynomial curve fitting task. Data
points are denoted by ‘×’ and models are denoted by ‘—’. (a) The
ground-truth curve where the observed points are sampled (with
Gaussian noise). (b) and (c) The local models of three clients and
the global model trained by FedAvg and FedNP, respectively. (d)
global model distribution estimated by FedNP (within three stan-
dard deviations of the mean).

scenarios, each client only has access to their local data,
and therefore the ground-truth global data distribution is
inaccessible due to their distinct local data distributions.
For instance, Laplace approximation (LA) and Monte-Carlo
(MC) approximation, adopted by conventional BFL frame-
works (Al-Shedivat et al. 2020; Chen and Chao 2020; Liu
et al. 2021), are widely adopted techniques to approximate
an intractable distribution, but it relies on the observation of
global data and therefore cannot apply to our problem set-
tings directly. Another Bayesian inference (BI) method, ex-
pectation propagation (EP) (Minka 2013), does not require
access to global data and has the potential to approximate the
global data distribution. However, applying EP to facilitate
our auxiliary task is highly non-trivial:

• EP impractically requires to calculate the intractable
likelihood term L(θk,Xk|z) due to the unavailability of
θk, the model parameters for the current mini-batch.

• Since only model parameters for the previous mini-batch
are available, we empirically tested an intuitive approach
– using such parameters to evaluate the likelihood – and
found that the model would not reliably converge.

To overcome these challenges, we reformulate EP by
factorizing the latent global data distribution p(z|X) into
several approximate posterior factors q(z|Xk), without the
need to calculate the likelihood term. We further propose an
EP-like probabilistic neural network, dubbed federated neu-
ral propagation (FedNP), which follows the general update
rule of EP and efficiently estimates the global data distribu-
tion. More specifically, FedNP enhances the local training
task with an auxiliary task that explicitly estimates a latent
global data distribution, stabilizing and correcting the pro-

cess of local training (See Figure 1(c)), whereby a proba-
bilistic neural network is adopted to map such distribution
to a global model distribution, consequently regularizing the
local model by avoiding it sinking into local data distribu-
tion. Figure 1(d) shows that FedNP successfully estimates
a correct global model parameter distribution and avoids
catastrophic failure of local models on unseen data, resulting
in a more accurate global model.

Furthermore, unlike existing algorithms for deep-
learning-based EP (Jylänki, Nummenmaa, and Vehtari 2014;
Soudry, Hubara, and Meir 2014; Heess, Tarlow, and Winn
2013) that require numerical approximation or sampling, we
develop a closed-form approximation algorithm for inferring
the latent global data distribution, thereby improving the ef-
ficiency of modeling federated data.

The major contributions of our work are three-fold:
• We present a new perspective on handling non-i.i.d fed-

erated data, which explicitly considers the global data
distribution when performing the local training steps.

• We reformulate EP to remove the dependence on the in-
tractable likelihood term and derive a closed-form ap-
proximation for the latent global data distribution using
deep neural networks, allowing our algorithm to be end-
to-end differentiable.

• Our experiments on real-world non-i.i.d image and
speech datasets demonstrate that FedNP effectively alle-
viates the performance deterioration caused by non-i.i.d
data compared to state-of-the-art baselines.

2 Related Work
Federated learning (FL), as a new collaborative learn-
ing paradigm, has been gaining more attention in recent
years (McMahan et al. 2017a; Yang et al. 2019), and the
challenges of FL from non-i.i.d data have been noticed, es-
pecially for supervised learning tasks (Li et al. 2021, 2020;
Zhao et al. 2018; Xie, Koyejo, and Gupta 2019; Yu et al.
2020). A fundamental idea of these works is to regularize
local models during the local training step in FL. Most of
them either directly take the averaged model of previous fed-
erated turn as the ground truth to regularize the local model
training, e.g. FedProx (Li et al. 2020) and MOON (Li, He,
and Song 2021), or use a dynamic regularizer, e.g. FedDyn
(Acar et al. 2021), FedDC (Gao et al. 2022), or estimate a
correction term for local models based on previous aggre-
gated models, e.g. SCAFFOLD (Karimireddy et al. 2020).
In contrast, we introduce into local model training an auxil-
iary task that explicitly estimates the global data distribution
from partitioned data, thereby encouraging the local models
to be more expressive and preventing them from sinking into
local distributions.

From the perspective of Bayesian inference (BI),
Bayesian federated learning (BFL) has been studied be-
fore, but mainly under the context of model aggregation.
For instance, most existing BFL methods (Al-Shedivat et al.
2020; Liu et al. 2021; Chen and Chao 2020) focus on in-
ferring global model distribution by aggregating over lo-
cal model distributions, while our method aims to regular-
ize local model distributions by inferring a latent global
data distribution from input data across clients. Furthermore,



similar to FedAvg (McMahan et al. 2017a), FedPA (Al-
Shedivat et al. 2020) targets a general federated learning
setting, without considering a more challenging extremely
non-i.i.d federated settings, such as ours. To handle non-i.i.d
data, FedBE (Chen and Chao 2020) propose a Bayesian en-
semble method for server-side model aggregation. However,
it requires collecting an unlabeled data set across clients,
failing to handle our non-i.i.d FL setting. Other key aspects
that distinguish our FedNP from the above methods are as
follows. First, FedNP reformulates expectation propagation
(EP) with neural networks for handling non-i.i.d FL settings.
Inherits from EP, FedNP does not require access to global
data during training. In contrast, the Laplace approximation
(LA) and Monte-Carlo (MC) approximation, adopted by the
above methods, relies on the observation of global data. Sec-
ond, our FedNP algorithm is sampling-free and end-to-end
differentiable, leading to a more efficient and scalable frame-
work. (Please refer to Appendix C for related work on EP
with neural networks.)

3 Background
Federated Learning (FL). Following (Li et al. 2019), we
formulate FL with the non-i.i.d data distributed on separate
clients We denote the number of clients in the FL system as
K and the private annotated dataset in the party k ∈ {1...K}
as (Xk,Yk), where Xk = {xk,i}nk

i=1 contains nk observa-
tions and Yk = {yk,i}nk

i=1 includes the corresponding train-
ing labels.

The FL target is to find a global model θ with private data
distributed on different clients by the following iterative pro-
cess (i.e., FedAvg):
1. Each client k optimizes their local model θk on its private

data set (Xk,Yk) with the objective J(·) according to
Eq. 1 below, and send θk to the server.

2. The server computes the global model θavg with
weighted average of client models {θk}Kk=1 with θavg ≜∑K

k=1 vkθk, where vk is the weight of the corresponding
party k such that vk ≥ 0 and

∑K
k=1 vk = 1.

3. The server sends θ to all clients and repeat step 1-3 until
it reaches the stop criterion.

min
θk

J(θk;Xk,Yk) ≜
1

nk

nk∑
i=1

ℓ (xk,i,yk,i;θk) , (1)

where ℓ(·; ·) is the localized loss function, e.g. cross-entropy
loss for classification tasks.
Expectation Propagation (EP). Before introducing our
FedNP, we begin by reviewing the traditional EP algorithm
(Minka 2013). EP is a deterministic approximation algo-
rithm, often used for Bayesian inference of posterior distri-
butions of model parameters, which is believed to be able to
provide significantly more accurate approximations than VI
(Jordan et al. 1999) and LA (MacKay 1992) methods.

Consider a regression task that predicts some attributes
of interest θ = {θk}Kk=1 given observations X = {Xk}Kk=1,
where K is number of data partitions. Assume both {θk}Kk=1

and {Xk}Kk=1 are conditionally independent given the latent
variable z. As the posterior distribution of interest p(z|X) is

computationally intractable, EP attempts to approximate it
with a tractable approximating distribution q(z), which can
be further factorized into multiple approximate factors:

q(z) ∝ p0(z)

N∏
i=1

qi(z), (2)

where p0(z) is the prior distribution; the approximate factor
qi(z) is iteratively refined so that they capture the contribu-
tion of each data partition Xk to the posterior p(z|X):

p(z|X) ∝ p0(z)

K∏
k=1

L(θk,Xk|z), (3)

where L(θk,Xk|z) denotes likelihood. If mini-batch opti-
mization is adopted, only mini-batches are used to evaluate
such likelihood instead of the entire data partition iteratively.
Specifically, EP iterates over the following steps:
1. Construct the cavity distribution by removing one of the

approximate factors, i.e., the k-th factor. It can be written
as: q−k(z) ∝ p0(z)

∏
j ̸=k qj(z)

2. Integrate the likelihood L(θk,Xk|z) to the cav-
ity to produce the hybrid distribution: hk(z) ∝
q−k(z)L(θk,Xk|z).

3. Update the parameters of the k-th approximated factor
qk(z) through minimizing the KL divergence between
the hybrid distribution hk(z) and the approximated dis-
tribution q(z) , namely, KL [hk(z)∥q−k(z)qk(z)].

4. Update the approximated distribution q(z) by includ-
ing the updated approximated factor qk(z): q(z) ∝
q−k(z)qk(z).

When qk(z) is assumed to follow an exponential family
distribution (e.g., a Gaussian), minimization of the KL di-
vergence in Step 3 can be reduced to moment matching (ichi
Amari and Nagaoka 2000). However, when applying EP to
deep neural networks, this moment matching step is com-
putationally intractable, requiring numerical approximation
or sampling, and therefore has to compromise between ac-
curacy and efficiency. It’s also worth noting that θk in our
problem settings is the local model parameters for the cur-
rent mini-batch. Due to its unavailability when evaluating
the likelihood term during training, EP cannot be directly
applied to our problem settings. Addressing these problems
are primary focuses of our model.

4 Methodology
As shown in the toy experiment, local models tend to sink
into local data distributions, resulting in a model drift in the
local training step of FL with non-i.i.d data. In the following
sections, we firstly formalize such problems and then present
a sampling-free and fully differentiable deep probabilistic
neural network for achieving end-to-end goals of inferring
latent global data distribution from non-i.i.d partitioned data,
thereby regularizing local models and preventing them from
sinking into local data distributions.

4.1 Problem Formulation
We consider non-i.i.d FL settings with classification as ma-
jor task and aim to enhance the local training steps of FL
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Figure 2: Graphical Model of FedNP. α is the uniform prior
of the latent variable z.
with an auxiliary task that explicitly models a latent global
data distribution to constrain local training. Specifically,
suppose we are given K annotated data partitions (X,Y) =
{(Xk,Yk)}Kk=1 privately maintained by K clients, where
Xk = {x|x ∼ pk(x)} containing data items that are drawn
from non-identical distributions, i.e., pk(x) ̸= pk′(x) for all
k ̸= k′, and Yk includes the corresponding training labels.
Suppose each client optimizes their local model θk on their
private data (Xk,Yk). Assume both θk and Xk are condi-
tionally independent given the latent variable z which repre-
sents the global data distribution. The probabilistic model is
shown using the standard directed graphical notation in Fig-
ure 2. Our model belongs to the broad category of Bayesian
deep learning (Wang and Yeung 2016, 2020), with a graph-
ical model component as additional inductive bias for the
probabilistic neural network. The auxiliary task aims to infer
the posterior distribution p(z|X), whereby the conditional
global model distributions p(θk|z) are produced, regulariz-
ing each local model θk to have a global view.

4.2 Federated Neural Propagation
Our proposed Federated Neural Propagation (FedNP) is a
special type of message passing algorithm for inferring a la-
tent global data distribution using localized inference over
non-i.i.d data partitions and preventing FL local models
from sinking into local data distributions. FedNP follows a
general updating rule of another message passing algorithm,
EP, but adopts a different factorization of the target distri-
bution to remove the dependence on the intractable likeli-
hood. The advantage of FedNP is that it can approximate
the global data distribution using fully differentiable neural
networks that encode the respective closed-form approxima-
tion, rather than inefficient sampling and numerical quadra-
ture adopted by existing neural network-based EP methods.

Specifically, assuming a uniform distribution for the prior
p0(z), the posterior of the latent global data distribution
p(z|X) can be factorized as the product of the posteriors
conditioned on local data:

p(z|X) ∝ p0(z)

K∏
k=1

p(Xk|z)

∝
K∏

k=1

p0(z)p(Xk|z) ∝
K∏

k=1

p(z|Xk).

(4)

Eq. (4) is derived by simply applying Bayes’ theorem with
the assumption of a uniform prior for p0(θ). We then follow
EP to adopt K approximate factors to approximate p(z|X).
Specifically, we use qk(z) as the Gaussian distributed ap-
proximate factor for p(z|Xk) and have

q(z) ∝
K∏

k=1

qk(z), (5)

where q(z) approximates global data distribution p(z|X);
q(z) = N (zm, zs), where zm and zs are the mean and vari-
ance, respectively; qk(z) = N (zm,k, zs,k), where zm,k and
zs,k are the mean and variance, respectively. Unlike Eq. (2),
we omit the prior p0(z) in the expression as we assume it
is a uniform distribution. In the following subsections, we
will show how to calculate the mean and variance of q(z)
analytically using fully differentiable neural networks.
Infer the Approximate Global Data Distribution q(z).
We follow the general updating steps of EP and propose a
closed-form approximation of p(z|X) as q(z). We firstly ini-
tialize mean and variance of each Gaussian factor, qk(z) =
N (zm,k, zs,k). We follow Step 1 of EP in Section 3 to con-
struct the cavity and the hybrid distributions q−k(z), hk(z):

q−k(z) ∝
∏
j ̸=k

qj(z), (6)

where the cavity distribution q−k(z) = N (zm,−k, zs,−k),
whose mean zm,−k and variance zs,−k are calculated by tak-
ing product of Gaussain factors.

We then follow Step 2 of EP in Section 3 to construct the
hybrid distribution hk(z):

hk(z) ∝ p(z|Xk)q−k(z), (7)
Inspired by nature-parameter-network (NPN) (Wang, Shi,
and Yeung 2016), to parameterize the posterior p(z|Xk), we
adopt deep neural networks to probabilistically propagate in-
formation from Xk to the latent variable z:

p(z|Xk) = ϕ(z,Xk), (8)
where ϕ is a neural network (see implementation details in
Appendix of corresponding experiment settings).

When following Step 3 and 4 of EP in Section 3 to update
q(z), we find that moment matching is not analytical, due
to deep neural networks involved in ϕ(z,Xk). To overcome
this challenge, we propose the following theorem which pro-
vides a closed-form solution for moment matching, and thus
obtaining closed-form approximation, q(z), for the posterior
of the global data distribution, p(z|X).

Theorem 1. Suppose we are given a data partition Xk lo-
cated at the k-th party during FL. Assume data partitions
{Xk}Kk=1 are conditionally independent given a latent vari-
able z. Let f : R|Xk| → R1 be a neural network taking as
input Xk. Let C = f(Xk)z and C ∼ N (Cm,−k, Cs,−k).
Let q−k(z) and hk(z) be the cavity distribution (defined in
Eq. (6)) and the hybrid distribution (defined in Eq. (7)), re-
spectively. We further define q(z) = N (zm, zs) as in Eq.
(5). There exists a function ϕ : R|z| × R|Xk| → R1, such
that the update rules of zm and zs can be written in closed
form as:

zm = S1, (9)
zs = S2 − S2

1 , (10)
where
S1 = [(Cm,−k+Cs,−k)EC(σ(C))−Cs,−kEC(σ2(C))]/S0f(Xk),

(11)

S2 = [(Cm,−k+2Cs,−k)EC(σ2(C))−2Cs,−kEC(σ3(C))]/S0f
2(Xk),

(12)
S0 = EC(σ(C)). (13)



We leave the proof in Appendix A.2.
Given a data partition Xk, Theorem 1 provides the closed-

form updates for mean and variance of q(z) = N (zm, zs).
Note that Theorem 1 requires an auxiliary distribution of the
latent variable C = f(Xk)z. If the cavity distribution is
Gaussian, i.e., q−k(z) = N (zm,−k, zs,−k), C also follows
a Gaussian distribution. Therefore denoting this distribution
of C as qc,−k(C), we have that:

qc,−k(C) = N (Cm,−k, Cs,−k) ∝
∏
j ̸=k

qj(C), (14)

where N (Cm,−k, Cs,−k) is a Gaussian distribution with the
mean and variance:
[ Cm,−k, Cs,−k ]

⊤
=
[
f (Xk) zm,−k, f

2 (Xk) zs,−k

]⊤
.

(15)
Theorem 1 further requires the first three moments of
qc,−k(C). We therefore adopt Theorem 2 below to calcu-
late these first three moments, i.e., EC(σ(C)), EC(σ

2(C)),
and EC(σ

3(C)), thereby providing an analytical solution for
calculating the first two moments of the hybrid distribution
hk(z) , S1 and S2. Theorem 1 then follows Step 4 (Sec-
tion 3) to update q(z) = N (zm, zs), whose parameters zm
and zs can be updated in closed form as well.
Theorem 2. Suppose C ∼ N (Cm,−k, Cs,−k). Let d ⩾ 1
be a positive integer. There exist two real constants a and
b, such that the first d moments can be expressed in closed
form:

EC(σ
d(C)) ≈ σ

(
a (Cm,−k + b)√
1 + ζ2a2Cs,−k

)
. (16)

The proof for Theorem 2 is in Appendix A.3.
Generally, Theorem 1 & 2 allow our FedNP algorithm to

be end-to-end differentiable. We present such an algorithm
with a mild extension to the commonly used FL framework
(FedAvg) in Algorithm 1 (see Appendix B).
Infer the Conditional Global Model Distribution p(θk|z).
In this section, we aim to infer the conditional global model
distribution p(θk|z) based on the approximate global data
distribution q(z). Since natural parameter network (NPN)
(Wang, Shi, and Yeung 2016) allows inferring a target dis-
tribution based on an input distribution through layers of ef-
ficient sampling-free probabilistic transformation, we adopt
such a model to infer p(θk|z) given q(z), i.e.:

p(θk|z) = NPN(q(z)), (17)
where NPN(·) represents the natural parameter network,
whose implementation is detailed in Appendix.

4.3 Learning
Our design of the loss function aims at regularizing local
models to have a global view using the conditional global
model distribution p(θk|z). Since we only have θk for the
previous mini-batch, we take the conditional global model
distribution p(θk|z) to match an auxiliary Gaussian distri-
bution p(θ̂k) = N (θk, ϵ), where ϵ is a vector with all en-
tries set as small constants. Following (NPN) (Wang, Shi,
and Yeung 2016), the loss can be written as:

ℓ = KL
[
p(θk|z)∥p(θ̂k)

]
(18)

To jointly train FedNP and local models of FL, our final
loss for local training can be written as:

J(θk;Xk,Yk) + λℓ, (19)
where J(·) is the loss for local training (Eq. 1) and λ is the
hyperparameter balancing two losses.
Approximation Error and Computational Efficiency. In
Lemma 2, we use the probit function Φ (ζa(C + b)) to ap-
proximate σd(C). Similar approximation is also adopted
by (Wang, Shi, and Yeung 2016) and (Wang and Manning
2013). Both the numerical and theoretical approximation
analysis has been well studied in Section 3.2 (Wang, Shi,
and Yeung 2016). Our closed-form update steps are efficient
in computation. Suppose that there is a system with K data
partitions/clients (note that K is usually known beforehand)
and the likelihood term is tractable, for EP with neural net-
works in (Jylänki, Nummenmaa, and Vehtari 2014) which
requires numerical quadratures, its computational complex-
ity is O(MK), where M is the number of quadratures
points. For EP with MCMC, its computational complexity
is O(NK), where N is the number of MCMC samples. To
approach a good approximation, both N and M should be
sufficiently large (Barthelmé and Chopin 2014). In contrast,
with our closed-form update, FedNP’s computational com-
plexity is reduced to O(K).

We show the computational efficiency as well as the ap-
proximation accuracy in Appendix D.3.

5 Experiments
In this section, we evaluate our FedNP on non-i.i.d. cross-
silo datasets on numerical regression, image classification,
and speech recognition tasks to demonstrate its effective-
ness. We describe the experimental details, including the
environments, implementations, etc., in Appendix D. The
datasets used in our experiments are public, and codes can
be found in the supplementary file.

5.1 Toy Experiments
Dataset. We evaluate our FedNP on a toy cross-silo non-
i.i.d dataset. Given x, we will use the following quadratic
polynomial function to generate the labels.

y = −x2 + 2x+ 5 + ϵ (20)
where ϵ ∼ N (0, 5). We assume three clients and sample
data points from three disjoint segments as the local training
data for each client (see Figure 1(a)).

Results. Figure 1(b) visualizes the trained local models
and global model of FedAvg. The local training leads the
model to learn a biased curve due to the skewed local data
distribution. Although all the three local models fit their own
data points perfectly, they fail to generalize well to the un-
seen global data. This is because the global model obtained
by averaging fails to capture the global data distribution. In
contrast, our FedNP is more robust (see Figure 1(c)), and the
estimated global model distribution is more accurate (Fig-
ure 1(d)), which corrects the local training and avoids per-
formance deterioration. The experiment setup, quantitative
results along with qualitative comparison with FedPA are
shown in Appendix D.2.



5.2 Image Classification with Non-IID Image
Datasets

Task. We evaluate the performance of FedNP on image
classification, which is the most fundamental task in image
datasets under the supervised learning setting. We focus on
a setting where the local data distributions across parties are
non-i.i.d, which increases the difficulty of training.
Datasets. We conduct experiments on CIFAR-
100 (Krizhevsky, Nair, and Hinton 1995) and Tiny-
Imagenet (Le and Yang 2015). Similar to previous
study (Wang et al. 2020), we use Dirichlet distribution to
generate the non-i.i.d data partition among clients. With the
above partitioning strategy, each client may have relatively
few data samples in some classes. We leave details in
Appendix D.3.
Baselines. We compare FedNP with four approaches includ-
ing (1) FedAvg (McMahan et al. 2017a), (2) FedProx (Li
et al. 2020), (3) MOON (Li, He, and Song 2021), (4)
SCAFFOLD (Karimireddy et al. 2020), (5) FedDyn (Acar
et al. 2021), (6) FedDC (Gao et al. 2022), (7) FedPA (Al-
Shedivat et al. 2020), and (8) FedLA (Liu et al. 2021) as
discussed in related work. For more details, please refer to
Appendix D.3. To further validate the robustness and scal-
ability of FedNP, we vary the number of clients from 10,
50, and 100. To keep the main paper concise, we leave the
full performance table in Appendix D.3 and show the per-
formance on the 10-client default setting in Table 1.
Results. Table 1 shows the top-1 test accuracy of all ap-
proaches with the 10-client default setting. Comparing dif-
ferent FL approaches, we can observe that FedNP is consis-
tently the best approach. It outperforms FedAvg by around
2% accuracy on average. FedProx’s accuracy is worse than
FedAvg. This is because directly minimizing the distance
between the global model and the local model will nega-
tively affect convergence (note that the initial local model in
the local training phase is exactly the server-side model).
MOON also minimizes the distance between the global
model and local models. Its difference from FedProx is that
MOON defines the distance in the feature space instead of in
the parameter space. FedDyn’s and FedDC’s dynamic regu-
larizers do not offer significant performance gain for sophis-
ticate models. Therefore, their performances are also close
to FedAvg. The theoretical guarantee of SCAFFOLD re-
lies on the strong smoothness assumption, which does not
necessarily hold true in deep learning. Therefore, its per-
formance suffers a lot on these image classification tasks,
which has also been verified by Li et al. (2021). Compared
with the state-of-the-art BFL frameworks, our FedNP out-
performs FedLA (Liu et al. 2021) and FedPA (Al-Shedivat
et al. 2020), which employ Laplace approximation/MC-
approximation for model aggregation, by around 5% and 2%
in terms of accuracy, respectively. This demonstrates the im-
portance of inferring a latent global data distribution with
a sampling-free and end-to-end differentiable BFL frame-
work. Generally, our experimental results on CIFAR 100 and
TinyImageNet show superior performance and demonstrate
the effectiveness of the proposed FedNP.

To facilitate the qualitative evaluation of our FedNP, we

Table 1: The top-1 accuracy of FedNP and the other base-
lines of the 10-client setting on test datasets. We run three
trials and report the mean and standard deviation.

Methods CIFAR100 ↑ TinyImageNet ↑
FedAvg

(McMahan et al. 2017a) 62.93%± 0.3% 51.89%± 0.5%

FedProx
(Li et al. 2020) 62.11%± 0.2% 50.63%± 0.2%

MOON
(Li, He, and Song 2021) 63.07%± 0.3% 51.44%± 0.3%

SCAFFOLD
(Karimireddy et al. 2020) 53.50%± 0.3% 46.28%± 0.2%

FedDyn
(Acar et al. 2021) 62.04%± 0.3% 47.34%± 0.2%

FedDC
(Gao et al. 2022) 63.15%± 0.3% 47.34%± 0.2%

FedPA
(Al-Shedivat et al. 2020) 63.44%± 0.3% 49.57%± 0.2%

FedLA
(Liu et al. 2021) 60.98%± 0.4% 50.23%± 0.2%

FedNP (ours) 65.03% ± 0.2% 53.18% ± 0.3%

randomly sample data from the first 10 classes of CIFAR-
100 and utilize t-SNE (Van der Maaten and Hinton 2008) to
visualize the corresponding ResNet18 backbone (served as
the shared encoder for classifier and q(z)) output produced
by FedNP in Figure 3. Figure 3 shows two advantages of
our FedNP compared to FedAvg. First, FedNP is capable
of learning more discriminative features among classes with
more inner-class compactness and larger inter-class mar-
gins. Second, FedNP is able to preserve the structure of
global data distribution even in the clients (e.g., client 1 in
Figure 3(b)) whose class distributions are extremely imbal-
anced; in contrast, the data distribution learned by FedAvg is
relatively messy. Besides, we visualize the predicted model
distribution by FedNP in Figure 5 to verify the efficacy of
estimating the global model distribution, as shown in Ap-
pendix D.3. Moreover, to evaluate the computational effi-
ciency and accuracy of the approximation for the proposed
closed-form update, we compare FedNP with the closed-
form update and its sampling-based variant. We leave the
details and results in Appendix D.3.

Moreover, to evaluate the computational efficiency and
accuracy of the approximation for the proposed closed-form
update, we compare FedNP with the closed-form update and
its sampling-based variant. We leave the details and results
in Appendix D.3.

5.3 Speech Recognition with Large-scale Non-IID
Conversational Speech Dataset

Task. We evaluate our method on a speech task to demon-
strate the efficacy of our proposed FedNP on natural real-
world non-i.i.d speech datasets. We applied FedNP to the
learning of deep neural network acoustic models. The goal
of this task is to transcribe a piece of speech to text.
Datasets. We evaluate our proposed method on a challeng-
ing real conversational speech dataset CHiME-5 (Barker
et al. 2018), whose data are collected from daily life with
diverse environments and various speakers. CHiME-5 is
a large-scale corpus of real-world multi-speaker conversa-



(a) Features of local images extracted by the FedAvg model. (b) Features of local images extracted by the FedNP model.

Figure 3: T-SNE visualizations on features of local images extracted by the models trained via FedAvg and FedNP on CIFAR-
100. For better presentation, only the first 10 classes (with the class id of 0, 1, ..., 9) and the first 6 clients are presented.

tional speech in home environments. The training set is orig-
inally collected by 16 conversation sessions, each consisting
of different speakers at different places and talking about
different topics; these sessions compose a natural non-i.i.d.
data partition. Hence, the non-i.i.d. federated speech setting
has 16 clients, one for each session during training, and ap-
plies the original testing set, containing 4 conversation ses-
sions. The detailed composition of 16 sessions is reported in
Appendix D.4.
Baselines. The baseline speech recognition systems are deep
neural network acoustic models on clients trained using
typical FL algorithms. Specifically, the deep neural net-
works are trained with an SRU-HMM-based acoustic model
scheme (Huang et al. 2020, 2021), where SRU is a popular
and efficient recurrent neural network for acoustic modeling.

Table 2: The WERs of different methods on CHiME-5 under
non-i.i.d FL settings. The WERs are reported with the mean
and standard deviation of three trials.

Methods WER ↓
FedAvg (McMahan et al. 2017a) 68.86±0.11

FedProx (Li et al. 2020) 66.72±0.28
FedPA (Al-Shedivat et al. 2020) 69.92±0.22

FedNP (ours) 64.30±0.21

In the implementation, SRU is used as a backbone of the
acoustic model, which contains 12 stacked layers with 1280
hidden nodes. We compare FedNP with three baselines: (1)
FedAvg (McMahan et al. 2017a), (2) FedProx (Li et al.
2020), and (3) FedPA (Al-Shedivat et al. 2020). SCAFFOLD
and FedLA are unstable in our preliminary experiments due
to the large models and complex tasks; therefore, we do
not include them as baselines. All baselines and our FedNP
adopt identical federated configurations. More implementa-
tion details can be found in Appendix D.4.
Results. We train the models using three different random
seeds and report the mean and standard deviation (STD) of
the test word error rates (WERs) in Table 2. Our FedNP
achieves around 4.56 % absolute WER reduction compared

to the FedAvg baseline, a large margin in ASR, suggesting
that our FedNP is capable of improving the performance un-
der realistic non-i.i.d speech datasets. Notably, FedPA per-
forms slightly worse than FedAvg due to its instability. Even
compared to the state-of-the-art non-i.i.d FL algorithm Fed-
Prox, our FedNP achieves around 2.42 % absolute WER re-
duction, which demonstrates that compared to naively typ-
ical methods that naively push local models closer to the
global model averaged in the last turn, FedNP can estimate
a more accurate global model distribution, leading to better
performance for non-i.i.d data.

6 Conclusion

We present a novel sampling-free and end-to-end differ-
entiable Bayesian federated learning framework, dubbed
FedNP, for non-i.i.d cross-silo data by enhancing the local
model with an auxiliary task that explicitly estimates the
global data distribution. We successfully alleviate the crit-
ical challenge in estimating the global data distribution on
partitioned non-i.i.d data with an expectation-propagation-
inspired probabilistic neural network. More specifically, we
tackle defects of existing algorithms for deep-learning-based
EP inference and derive a closed-form solution for esti-
mating the global data distribution, leading to a more effi-
cient solution for global data modeling. Experiments on toy
non-i.i.d data and real-world extremely non-i.i.d image and
speech data partitions demonstrate that our framework ef-
fectively alleviates the performance deterioration caused by
non-i.i.d. data compared to other representative baselines.

So far, FedNP has not been evaluated on the unsupervised
learning setting, nor on datasets with other modalities such
as text. Another current limitation of FedNP is that though
FedNP helps facilitate the joint modeling across data cen-
ters as an FL algorithm, such cooperation might also bring
the risk of personal privacy leakage. Therefore, it is also nec-
essary to explore more privacy-protection methods that can
further improve the data privacy and security protection of
FL algorithms, including FedNP.
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A Proofs

A.1 Supplementary Lemma for Proofs

We formally state the Stein’s Lemma here, following the ver-
sion in (Ingersoll 1987).

Lemma 1. Let C ∼ N (Cm,−k, Cs,−k), and let g be a dif-
ferentiable function satisfying E[g′(X)] < ∞. Then

E[g(C)(C − Cm,−k)] = Cs,−kE[g′(C)] (21)

A.2 Proof of Theorem 1

Theorem 1. Suppose we are given a data partition Xk lo-
cated at the k-th party during FL. Assume data partitions
{Xk}Kk=1 are conditionally independent given a latent vari-
able z. Let f : R|Xk| → R1 be a neural network taking as
input Xk. Let C = f(Xk)z and C ∼ N (Cm,−k, Cs,−k).
Let q−k(z) and hk(z) be the cavity distribution (defined in
Eq. (6)) and the hybrid distribution (defined in Eq. (7)), re-
spectively. We further define q(z) = N (zm, zs) as in Eq.
(5). There exists a function ϕ : R|z| × R|Xk| → R1, such
that the update rules of zm and zs can be written in closed
form as:

zm = S1, (22)

zs = S2 − S2
1 , (23)

where

S1 = [(Cm,−k+Cs,−k)EC(σ(C))−Cs,−kEC(σ2(C))]/S0f(Xk),
(24)

S2 = [(Cm,−k+2Cs,−k)EC(σ2(C))−2Cs,−kEC(σ3(C))]/S0f
2(Xk),

(25)
S0 = EC(σ(C)). (26)

Proof. With C ∼ N (Cm,−k, Cs,−k) and Theorem 2, we
have that the first three moments of σ(C) can be expressed
in closed form, e.g.:

EC(σ(C)) ≈ σ

(
(Cm,−k)√
1 + ζ2Cs,−k

)
; (27)

E(σ2(C)) ≈ σ

(
a (Cm,−k + b)√
1 + ζ2a2Cs,−k

)
, (28)

where ζ2 = π
8 , a = 4− 2

√
2, and b = ln (

√
2 + 1);

E(σ3
C(C)) ≈ σ

(
a (Cm,−k + b)√
1 + ζ2a2Cs,−k

)
, (29)

where ζ2 = π
8 , a = 6

(
1− 1

3√2

)
, and b = ln ( 3

√
2− 1).

Let q(z|Xk) = ϕ(z,Xk) = σ(f(Xk)z), where σ de-
notes Sigmoid activation function. Let the normalizer S0 =∫
hk(z)dz. With Eq. (27), we have:

S0 =

∫
σ (f (Xk) z) q−k(z)dz

= EC(σ(C))

≈ σ

(
(Cm,−k)√
1 + ζ2Cs,−k

) (30)

Let the first moment of z, S1 =
∫
zhk(z)dz/

∫
hk(z)dz.

We have:

S1 =

∫
f(Xk)zσ (f (Xk) z) q−k(z)dz

f(Xk)S0
=

EC (C · σ(C))

f(Xk)S0

(31)

We then take Lemma 1 to compute EC (C · σ(C)), we
have

EC (σ(C) · (C − Cm,−k)) = Cs,−kEC (σ′(C)) (32)

Then we have:
EC(σ(C) · C) = (Cs,−k + Cm,−k)EC(σ(C))

− Cs,−kEC(σ
2(C)),

(33)

With Eq. (31) and Eq. (33), we therefore have:

S1 =

[
(Cm,−k + Cs,−k)E(σ(C))− Cs,−kE(σ2(C))

]
S0f(Xk)

.

(34)

Combining Eq. (27), Eq. (28), Eq. (30) and Eq. (34) , we
have the first moment S1 being expressed in closed form.

Let the second moment of z, S2 =∫
z2hk(z)dz/

∫
hk(z)dz. We have:

S2 =

∫
f2(Xk)z

2σ (f (Xk) z) q−k(z)dz

f2(Xk)S0
=

EC

(
C2 · σ(C)

)
f2(Xk)S0

(35)

With Lemma 1, we have

EC (σ(C) · C · (C − Cm,−k)) =

Cs,−kEC

(
σ(C) +

(
σ(C)− σ2(C)

)
· C
) (36)

Then we have:
EC

(
C2 · σ(C)

)
=Cs,−kE (σ(C))

+ (Cs,−k + Cm,−k)EC(C · σ(C))

− Cs,−kEC(σ
2(C) · C)

(37)

We further adopt Lemma 1 to derive EC(σ
2(C) ·C), then

we have:

EC

(
σ2(C)(C − Cm,−k)

)
= Cs,−kEC

(
2σ2(C)− 2σ3(C)

)
(38)

Then
EC

(
σ2(C) · C

)
= (Cm,−k + 2Cs,−k)EC(σ

2(C))

− 2Cs,−kEC(σ
3(C))

(39)



With Eq. (35), Eq. (37) and Eq. (39), we have:

S2 =

[
(Cm,−k + 2Cs,−k)E(σ2(C))− 2Cs,−kE(σ3(C))

]
S0f2(Xk)

.

(40)
Combining Eq. (28)-(30) and Eq. (40), we have the sec-

ond moment S2 being expressed in closed form as well.
With first two moments of z, S1 and S2, being expressed

in closed form, we have the approximated posterior of global
data distribution q(z) = N (zm, zs), whose parameters zm
and zs can be updated in close-form:

zm = S1, (41)

zs = S2 − S2
1 , (42)

A.3 Proof of Theorem 2
Theorem 2. Suppose C ∼ N (Cm,−k, Cs,−k). Let d ⩾ 1
be a positive integer. There exist two real constants a and
b, such that the first d moments can be expressed in closed
form:

EC(σ
d(C)) ≈ σ

(
a (Cm,−k + b)√
1 + ζ2a2Cs,−k

)
, (43)

Proof. Let a, b be two real constants. Taking the probit fun-
tion Φ (ζa(C + b)) to approximate σd(C) by matching their
value and derivative at median of the probit function, we
have:

σk(C) ≈ Φ(ζa(C + b))

where

a = 2d(1− 2−1/d)

b = log(21/d − 1)
(44)

Let d = 1, we have:

σ(C) ≈ Φ(ζC) (45)

With Theorem 3 (Wang, Shi, and Yeung 2016) and Eq. (45),
we have:

EC(σ
d(C)) =

∫
σd(C)N (Cm,−k, Cs,−k) dC

≈
∫

Φ(ζa(x+ b)N (Cm,−k, Cs,−k) dC

= Φ

(
ζa (Cm,−k + b)√
1 + ζ2a2Cs,−k

)

≈ σ

(
a (Cm,−k + b)√
1 + ζ2a2Cs,−k

)
(46)

Combining Eq. (44) and Eq. (46) concludes the proof.

B The FedNP Algorithm
The FedNP algorithm (see Algorithm 1) runs on a federation
consisting of a central server and K clients, where the k-th
client has nk training examples. Each client conducts T lo-
cal updating iterations. Between every L updates, all clients
send updated parameters to the server; the server aggre-
gates the received model parameters with weighted averag-
ing (McMahan et al. 2017a) and computes the updated cav-
ities parameters with Product-of-Gaussian (Airey and Gales
2003).

Practically, to further restrict the complexity of the ap-
proximate global model distribution, we extend the objec-
tive function (19) with an additional loss, i.e., the Kull-
back–Leibler divergence between the approximate global
data distribution and a Gaussian prior p(z):

ℓ̃ = KL
[
p(θk|z)∥p(θ̂k)

]
+KL [q(z)∥p(z)] (47)

C Related Work: EP with Neural Networks
To efficiently model the global data distribution from par-
titioned data, we follow the spirit of Expectation Propaga-
tion (EP). EP is one of the most popular Bayesian inference
methods (Minka 2013), which approximates the posterior
with approximate factors that are iteratively updated via mo-
ment matching. However, the moment matching can be in-
tractable if the likelihood term has a complex form, which
results in the intractability of the moments of the hybrid dis-
tribution. An intuitive solution is to approximate the likeli-
hood term by numerical quadrature (Jylänki, Nummenmaa,
and Vehtari 2014; Soudry, Hubara, and Meir 2014), but it
fails to scale to large datasets or complex neural networks.
Along a different line of research, (Heess, Tarlow, and Winn
2013) achieves this by incorporating neural networks to map
EP message inputs to EP message outputs.Zhao et al. (2020)
alleviate this problem by considering the EP’s KL diver-
gence between the target distribution and a mixture of expo-
nential family approximate factors as the objective function.
The closest work to ours is (Bui et al. 2018), which adopts
variational inference (VI) to simulate EP on federated set-
tings with synthetic data, but their EP update requires per-
forming gradient descent with a deliberately designed KL
loss. Furthermore, their method still relies on the likelihood
term, which is not applicable to our federated setting. In con-
trast, we reformulate EP to remove the dependence on the in-
tractable likelihood term and propose a closed-form solution
for moment matching without requiring numerical approxi-
mation and more efficient than estimating through gradient
descent.

To confirm the significance of the contribution in terms of
EP with neural networks, we give a comparison of related
works with our FedNP in Table 3.

D Experiment Details
D.1 Experimental Environments
We run all experiments on a machine with 314 GB RAM,
an Intel Xeon PHI 7290 CPU Processor, and two Tesla



Table 3: The comparison of supported features of representative methods

Representative method Sampling-free
EP update

Closed-form EP
update approximation

Numerical approxima-
tion/quadrature free

Jylänki, Nummenmaa, and Vehtari (2014) ✓ ✓ ✗
Bui et al. (2018) ✗ ✗ ✗

Heess, Tarlow, and Winn (2013) ✗ ✗ ✓
Zhao et al. (2020) ✗ ✗ ✗

Ours ✓ ✓ ✓

V100 GPUs. The operating system is CentOS 7. For de-
tailed versions of software environments, please refer to the
README.md files in corresponding code projects. Note that
the datasets used in our experiments are public, and codes
can be found in https://anonymous.4open.science/r/FedNP-
Neurips/ or the supplementary material.

D.2 Details of Toy Experiment
Experimental Setup We use the RMSprop optimizer with
a learning rate of 0.01 for all approaches. The batch size is
set to 10. The number of local epochs is set to 1. The total
number of communication rounds is 10.

Quantitative Results Table 4 shows the Mean Squared
Error (MSE) of FedNP and baselines under the above set-
ting. The MSE is evaluated on global training data. The
local training of the baselines leads the model to fit their
data points perfectly, failing to generalize well to the unseen
global data, thus having a higher value of MSE. In contrast,
our FedNP is more robust since we correct the local training
and avoids performance deterioration.

Table 4: MSE of FedNP and the baselines. We run three
trials and report the means and standard deviations accord-
ingly.

Method MSE ↓
FedAvg (McMahan et al. 2017a) 116.48± 2.54

FedProx (Li et al. 2020) 117.11± 2.96
SCAFFOLD (Karimireddy et al. 2020) 100.48± 3.24

FedPA (Al-Shedivat et al. 2020) 97.85± 3.44

FedNP (ours) 72.42 ± 2.39

Case Study of FedPA and FedNP Figure 4 shows the
comparison of FedPA and FedNP. The performance of
FedPA is slightly better than FedAvg, but it is also biased
towards local data and failed to capture the global informa-
tion, as opposed to our FedNP.

D.3 FedNP for Image Classification on Extremely
Non-IID Image Datasets

Dataset Preparation. CIFAR-100 (Krizhevsky, Nair, and
Hinton 1995) (60,000 images with 100 classes) and Tiny-
Imagenet (Le and Yang 2015) (100,000 images with 200
classes) datasets are with the MIT-License, so they are pub-
licly available.

(a) FedPA

local model of client 1
local model of client 2
local model of client 3
global model

(b) FedNP

local model of client 1
local model of client 2
local model of client 3
global model

Figure 4: Toy example on polynomial curve fitting task. Data
points are denoted by ‘×’ and models are denoted by ‘—’. (a) The
local models of three clients and the global model trained by Fe-
dAvg. (b) The local models of three clients and the global model
trained by FedNP.

Similar to (Li et al. 2021), we sample pk ∼ DirN (β)
and allocate a pk,j proportion of the images of class k to
client j, where Dir(β) is the Dirichlet distribution with a
concentration parameter β (0.5 by default). With the above
partitioning strategy, the data distribution of in each partition
is extremely non-i.i.d, i.e. each client may have relatively
few data samples in some classes.

Model Architectures. We use ResNet18 (He et al. 2016)
as the model architecture for all approaches. For FedNP, we
implement the auxiliary neural network f mentioned in Sec-
tion 4.4 by stacking a linear layer after the ResNet18 back-
bone, which takes the input Xk, and the output size is 10.
We then apply mean pooling to the output vector to achieve
f(Xk) with dimension 1. The non-linear function ϕ (Eq. 8)
is implemented as ϕ = σ(f(Xk)z), where σ is the sigmoid
function.

The dimension of z is set to 10. We then use an NPN with
one hidden layer to obtain p(z|Xk). For simplicity, we only
apply our FedNP to the parameter of the classifier instead of
the whole model, so the dimension of zm,k and zs,k is equal
to that of the classifier (i.e., the last MLP layer of ResNet18).
For MOON (Li, He, and Song 2021), we use the input of the
last MLP layer as the feature of the image.
Training Protocol. The number of clients and the dimen-
sion of z are set to 10. We use the SGD optimizer with a
learning rate of 0.01 for all approaches. The batch size is set
to 128. The number of local epochs is set to 10. The total
number of communication rounds is 100. We tune λ from
{0.001, 0.01, 0.1, 1} and report the best result. The best λ



Algorithm 1: The FedNP algorithm that is conducted on the
server and K clients. Notably, the operations below on vec-
tors or tensors are element-wise.

1: Input: K clients, and nk examples at the k-th client; L
be the local training iterations; T be the total number of
training iterations.

2: Server initializes model parameters θ(0), cavities{(
z
(0)
m,−k, z

(0)
s,−k

)}
k=1...K

(initialized as standard nor-
mal distribution) and broadcasts to all clients.

3: for t = 0, ..., T − 1 do
4: for Client k = 1, ...,K (parallelly) do
5: Update the parameters of approximated global data

distribution (z
(t)
m , z

(t)
s ) according to Eq. (9) and Eq.

(10).
6: Optimize the local model parameters θ(t)

k with the
extended objective 19.

7: if (t > 0 and (t − 1) mod L == 0) or (t ==
T − 1) then

8: Compute the approximated posterior factor
qk(z) with the approximation:

z
(t)
s,k =

(
z(t)s

−1
− z

(t)
s,−k

−1)−1

,

z
(t)
m,k = z

(t)
s,k

[
z
(t)
m

z
(t)
s

−
z
(t)
m,−k

z
(t))
s,−k

]
.

9: Upload
(
z
(t)
m,k, z

(t)
s,k

)
and θ

(t)
k to server.

10: Server updates the global model parameters by
weighted averaging:

θ(t+1)
avg =

K∑
k=1

1

nk
θ
(t)
k .

11: Server updates the approximated cavities for
each client k with the mixture as Product-of-
Gaussian (Airey and Gales 2003)

z
(t+1)
s,−k =

 K∑
j ̸=k

(
z
(t)
s,j

)−1

−1

,

z
(t+1)
m,−k = z

(t+1)
s,−k

K∑
j ̸=k

z
(t)
m,j

z
(t)
s,j

,

12: The server broadcasts θ(t+1)
avg and(

z
(t+1)
s,−k , z

(t+1)
m,−k

)
to the k-th client.

13: end if
14: end for
15: end for

Table 5: The top-1 accuracy of FedNP and the other base-
lines on CIFAR-100 dataset with varying numbers of clients.
We run three trials and report the mean and standard devia-
tion.

Methods 50 clients 100 clients

FedAvg
(McMahan et al. 2017a) 61.32%± 0.3% 50.78%± 0.3%

FedProx
(Li et al. 2020) 60.65%± 0.2% 48.90%± 0.3%

MOON
(Li, He, and Song 2021) 62.13%± 0.3% 52.88%± 0.3%

SCAFFOLD
(Karimireddy et al. 2020) 50.91%± 0.3% 46.28%± 0.2%

FedDyn
(Acar et al. 2021) 61.32%± 0.3% 50.30%± 0.2%

FedDC
(Gao et al. 2022) 60.93%± 0.3% 50.45%± 0.2%

FedPA
(Al-Shedivat et al. 2020) 61.77%± 0.3% 51.51%± 0.2%

FedLA
(Liu et al. 2021) 57.39%± 0.3% 47.34%± 0.2%

FedNP (ours) 63.74% ± 0.3% 53.37% ± 0.3%

of FedNP is 0.01. Note that FedProx and MOON also have
a hyper-parameter λ to control the weight of its proximal
term. We tune λ from {0.001, 0.01, 0.1, 1, 10}, the best λ is
0.01 for FedProx and 1 for MOON.
Results of 50-, and 100-Client Settings on CIFAR-100.
We conduct experiments on the CIFAR-100 dataset with
varying numbers of clients. As the number of clients in-
creases to 100, the performances of all methods drop signif-
icantly due to the sparsity of local training data. Our method
has consistent advantages over baselines. More specifically,
when the number of clients is 100, the local data is highly
label-skew, i.e., some of the classes are not seen in the lo-
cal client. Therefore, the local models severely collapse, re-
sulting in unstable aggregation. In this case, the methods
with explicit local model regularization, MOON and FedNP
perform better, and the performance of the methods with
dynamic regularizers is still close to FedAvg. Moreover,
FedNP outperforms MOON as its local models are regu-
larized by the estimated global model distribution, which
might be more accurate than MOON’s regularizer, i.e., a
contrastive loss with the previous global model. Further-
more, to show the computational efficiency of our proposed
closed-form update. On a single NVIDIA GeForce RTX
2080 GPU node, we compare FedNP with other baselines
in terms of efficiency using CIFAR100 and ResNet18. The
time cost for each client per communication round is 15s for
FedAvg and FedProx, 19s for FedNP, and 25s for MOON,
demonstrating the effectiveness of our proposed FedNP.

Analysis on Predicted Model Distributions by FedNP.
We visualize the predicted model distribution by FedNP in
Figure 5. For the convenience of visualization, we focus on
parameters of the classifier of the model, denoted by a matrix
C ∈ Rd×c, where c equals the number of classes and d is
the dimension of the features. More specifically, the matrix



C comprises c vectors with the dimension of d, and the jth

vector can be regarded as the centroid of the jth class in the
literature of metric learning (Liu et al. 2016). Figure 5 visu-
alizes the predicted distribution of parameters (shown within
three standard deviations of the mean), where the contour
lines represent probability densities of predicted model dis-
tributions and the deeper color indicates the higher proba-
bility. As Figure 5 shows, the predicted model distribution
coincides with the ground-truth data distribution (the solid
points), which also verifies the effectiveness of our FedNP.

Figure 5: T-SNE visualizations of predicted distribution es-
timated by FedNP on CIFAR-100.

Experiments on Computational Efficiency and Approx-
imation Accuracy of the Proposed Closed-form Update
of FedNP. To evaluate the computational efficiency and
approximation accuracy of the proposed closed-form up-
date of FedNP, one may ask whether we can compare
FedNP with existing EP algorithms. However, most of
the EP-based algorithms are not applicable to our prob-
lem setting due to the need for θk, the local model pa-
rameter at the current mini-batch during training, and thus
cannot directly compare with our FedNP. Therefore, we
construct another variant of FedNP, dubbed Quad-FedNP,
which adopt numerical-quadrature-based update (Jylänki,
Nummenmaa, and Vehtari 2014) for calculating moments
of the hybrid distribution in FedNP. Quad-FedNP requires
one-dimensional numerical quadratures implemented using
TorchQuad (Gómez, Toftevaag, and Meoni 2021), which
provides a very efficient numerical integration approxima-
tion toolkit optimized for graphics processing units (GPUs).
Notably, numerical-quadrature-based updates are usually
adopted by numerical-quadrature-based EP (Jylänki, Num-
menmaa, and Vehtari 2014), which is similar to MCMC-
based EP (Barthelmé and Chopin 2014) in terms of com-
putation of moments of the hybrid distribution.

We report the classification accuracy and the average run-
ning time per update of hybrid distribution for Quad-FedNP
and our FedNP in Table 6. We can see that our FedNP
runs much faster than Quad-FedNP with varied numbers of
quadrature points. For Quad-FedNP, the image classifica-
tion performance is improved by increasing the number of
quadrature points. It’s worth noting that the running time of
Quad-FedNP does not grow linearly with quadrature points

due to TorchQuad’s GPU-based optimization. Generally, our
FedNP runs 2.4 times faster than Quad-FedNP while achiev-
ing close evaluation scores (Acc.). The result demonstrates
the efficacy and efficiency of our proposed closed-form up-
date formulations.

Table 6: The accuracy and average running time per update
on CIFAR-100 of Quad-FedNP with different numbers of
quadrature points and our proposed FedNP.

Method Acc. Running Time

Quad-FedNP-100 62.92% 639ms
Quad-FedNP-1000 64.51% 650ms

Quad-FedNP-10000 65.07% 721ms
FedNP (ours) 65.03% 306ms

D.4 FedNP for Speech Recognition on
Large-scale Realistic Non-IID Conversation
Corpus

Detailed Configuration of CHiME-5. CHiME-5 is a
large-scale corpus of real-world multi-speaker conversa-
tional speech in home environments. We hold a ChiME-5
non-commercial usage license 1, which is issued by LPC.
The training dataset, development dataset, and test dataset
include about 40 hours, 4 hours, and 5 hours of conver-
sational speech. Table 7 shows the splits of training, de-
velopment, and evaluation sets. In each session, there are
four speakers with around 130-180 minutes of conversation
records. In the non-i.i.d setting, we treat each session as
the cross-silo data in each client, creating a natural non-i.i.d
dataset. For example, the speakers in clients 1, 2, 7, and 8
are all male, and sessions are recorded in different environ-
ments.

Table 7: The data have been split into training, development,
and evaluation set as follows.

Dataset Sessions Speakers Hours Utterances

Train 16 32 40:33’ 79,980
Dev 2 8 4:27’ 7,440
Eval 2 8 5:12’ 11,028

Training Details. We adopt the same configuration with
(Huang et al. 2020) to train all GMM-HMM. More specif-
ically, we follow the GMM-HMMs ASR structure to train
CHiME-5 using the adapted Kaldi s5b recipe (Povey et al.
2011) with single-channel audio data from GMM-HMM
training.

The speech data is preprocessed as 40-dimensional Mel-
filter bank coefficients (Biem et al. 2001), which are cal-
culated every 10ms. Notably, only the audio data recorded
by binaural microphones are employed to train and evalu-
ate this experiment. Inputs of all models consist of the cur-
rent frame and its 4 future contextual frames. The input se-
quence is chunked into a fixed length of 20. We performed

1https://chimechallenge.github.io/chime6/download.html



speaker-level mean and variance normalization on the in-
puts. The HMM states aligned by GMM-HMM are used
to train the subsequent neural network modules. The SRU
model is trained to fit the mapping from acoustic features to
HMM states. For FedNP, we feed SRU hidden state outputs
into a two-layer neural network, whose output size is the
same as the dimension of z, to utilize the feature extraction
capability offered by the SRU fully. We then apply the mean
pooling to the output vector to achieve f(Xk) with dimen-
sion 1. The non-linear function ϕ (Eq. 8) is implemented as
ϕ = σ(f(X)z), where σ is the sigmoid function.

The evaluation is performed with a tri-gram language
model trained from the transcription of CHiME-5. The mod-
els are optimized with the categorical cross-entropy loss us-
ing BPTT with a dropout rate of 0.1 between the recur-
rent layers. The batch size is set to 128. The optimizer
is Adam (Kingma and Ba 2014) with a learning rate of
3× 10−4.

For FL, there are 12 turns of aggregation with 1 local
training epoch between each turn. We tune λ from {0.0001,
0.001, 0.01, 0.1} and report the best result. The best λ of
FedNP is 0.001. For FedNP, the dimension of z is set as 16.
For FedProx, which has a hyper-parameter µ to control the
weight of its proximal term, we also tune it from {0.001,
0.01, 0.1, 1}, and the best λ is 0.01 for FedProx.


