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Abstract

We introduce a framework for learning robust visual
representations that generalize to new viewpoints, back-
grounds, and scene contexts. Discriminative models of-
ten learn naturally occurring spurious correlations, which
cause them to fail on images outside of the training distri-
bution. In this paper, we show that we can steer generative
models to manufacture interventions on features caused by
confounding factors. Experiments, visualizations, and the-
oretical results show this method learns robust representa-
tions more consistent with the underlying causal relation-
ships. Our approach improves performance on multiple
datasets demanding out-of-distribution generalization, and
we demonstrate state-of-the-art performance generalizing
from ImageNet to ObjectNet dataset.

1. Introduction
Visual recognition today is governed by empirical risk

minimization (ERM), which bounds the generalization er-
ror when the training and testing distributions match [47].
When training sets cover all factors of variation, such as
background context or camera viewpoints, discriminative
models learn invariances and predict object category labels
with the right cause [33]. However, the visual world is vast
and naturally open. Collecting a representative, balanced
dataset is difficult and, in some cases, impossible because
the world can unpredictably change after learning.

Directly optimizing the empirical risk is prone to learn-
ing unstable spurious correlations that do not respect the
underlying causal structure [11, 8, 24, 43, 4, 35]. Figure 1
illustrates the issue succinctly. In natural images, the ob-
ject of interest and the scene context have confounding fac-
tors, creating spurious correlations. For example, ladle (the
object of interest) often has a hand holding it (the scene
context), but there is no causal relation between them. Sev-
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Figure 1: Top predictions from a state-of-the-art ImageNet
classifier [21]. The model uses spurious correlations (scene
contexts, viewpoints, and backgrounds), leading to incor-
rect predictions.0 In this paper, we introduce a method to
learn causal visual features that improve robustness of vi-
sual recognition models.

eral studies have exposed this challenge by demonstrating
substantial performance degradation when the confounding
bias no longer holds at testing time [40, 19]. For example,
the ObjectNet [6] dataset removes several common spuri-
ous correlations from the test set, causing the performance
of state-of-the-art models to deteriorate by 40% compared
to the ImageNet validation set.

A promising direction for fortifying visual recognition
is to learn causal representations (see [42] for an excellent
overview). If representations are able to identify the causal
mechanism between the image features and the category la-
bels, then robust generalization is possible. While the tradi-
tional approach to establish causality is through randomized
control trials or interventions, natural images are passively
collected, preventing the use of such procedures.

This paper introduces a framework for learning causal
visual representations with natural images. Our approach
is based on the observation that generative models quan-
tify nuisance variables [23, 26], such as viewpoint or back-
ground. We present a causal graph that models both ro-
bust features and spurious features during image recogni-

0The correct categories are clearly a broom, a tray, and a shoe.
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Figure 2: Generative adversarial networks are steerable [23, 26], allowing us to manipulate images and construct interventions
on nuisances. The transformations transfer across categories. Each column in the figure presents images with one consistent
intervention direction.

tion. Crucially, our formulation shows how to learn causal
features by steering generative models to perform interven-
tions on realistic images, simulating manipulations to the
camera and scene that remove spurious correlations. As our
approach is model-agnostic, we are able to learn robust rep-
resentations for any state-of-the-art computer vision model.

Our empirical and theoretical results show that our ap-
proach learns representations that regard causal structures.
While just sampling from generative models will replicate
the same training set biases, steering the generative mod-
els allows us to reduce the bias, which we show is critical
for performance. On ImageNet-C [22] benchmark, we sur-
pass established methods by up to 12%, which shows that
our method helps discriminate based on the causal features.
Our approach also demonstrates the state-of-the-art perfor-
mance on the new ObjectNet dataset [6]. We obtain 39.3%
top-1 accuracy with ResNet152 [21], which is over 9% gain
over the published ObjectNet benchmark [6] while main-
taining accuracy on ImageNet and ImageNet-V2 [40]. Our
code is available at https://github.com/cvlab-
columbia/GenInt.

2. Related Work

Data augmentation: Data augmentation often helps
learn robust image classifiers. Most existing data augmen-
tations use lower-level transformations [29, 46], such as ro-
tate, contrast, brightness, and shear. Auto-data augmenta-
tion [13, 52] uses reinforcement learning to optimize the
combination of those lower-level transformations. Other
work, such as cutout [15] and mixup [51], develops new
augmentation strategies towards improved generalization.
[34, 54, 19] explored style transfer to augment the training
data, however, the transformations for training are limited
to texture and color change. Adversarial training, where

images are augmented by adding imperceptible adversar-
ial noise, can also train robust models [50]. However, both
adversarial training [50] and auto augmentation [13, 52] in-
troduce up to three orders of magnitude of computational
overhead. In addition, none of the above methods can do
high-level transformations such as changing the viewpoint
or background [6], while our generative interventions can.
Our method fundamentally differs from prior data augmen-
tation methods because it learns a robust model by esti-
mating the causal effects via generative interventions. Our
method not only eliminates spurious correlations more than
data augmentations, but also theoretically produces a tighter
causal effect bound.

Causal Models: Causal image classifiers generalize
well despite environmental changes because they are in-
variant to the nuisances caused by the confounding factors
[8]. A large body of work studies how to acquire causal
effects from a combination of association levels and inter-
vention levels [31, 11, 32]. Ideally, we can learn an invari-
ant representation across different environments and nui-
sances [8, 35] while maintaining the causal information [5].
While structural risk minimization, such as regularization
[27], can also promote a model’s causality, this paper fo-
cuses on training models under ERM [47].

Generative Models: Our work leverages recent ad-
vances in deep generative models [20, 28, 25, 10, 39]. Deep
generative models capture the joint distribution of the data,
which can complement discriminative models [25, 37].
Prior work has explored adding data directly sampled from
a deep generator to the original training data to improve
classification accuracy on ImageNet [38]. We denote it
as GAN Augmentation in this paper. Other works im-
proved classification accuracy under imbalanced and in-
sufficient data by oversampling through a deep generator
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[16, 17, 49, 7]. However, sampling without intervention,
the augmented data still follows the same training joint dis-
tribution, where unobserved confounding bias will continue
to contaminate the generated data. Thus, the resulting mod-
els still fail to generalize once the spurious correlations
changed. Ideally, we want to generate data independent of
the spurious correlations while holding the object’s causal
features fixed.

Recent works analyzing deep generative models show
that different variations, such as viewpoints and back-
ground, are automatically learned [26, 23]. We leverage
deep generative models for constructing interventions in re-
alistic visual data. Our work randomizes a large class of
steerable variations, which shifts the observed data distri-
bution to be independent of the confounding bias further.
Our approach tends to manipulate high-level transforma-
tions orthogonal to traditional data augmentation strategies
[12, 46, 29], and we obtain additional performance gains by
combining them.

Domain Adaptation: Our goal is to train robust mod-
els that generalize to unforeseen data. Accessing the test
data distribution, even unlabeled, could lead to overfitting
and fail to measure the true generalization. Our work thus
is trained with no access to the test data. Our setting is
consistent with ObjectNet’s policy prohibiting any form of
learning on its test set [6], and ImageNet-C’s policy dis-
couraging training on the tested corruptions. On the other
hand, domain adaptation [3, 41, 48] needs access to the dis-
tributions of both the source domain and the target domain,
which conflicts with our setting.

3. Causal Analysis

We quantify nuisances via generative models and pro-
pose the corresponding causal graph. We show how to
train causal models via intervention on the nuisance factors.
We theoretically show sufficient conditions for intervention
strategy selection that promote causal learning.

3.1. Correlation Analysis

Nuisance factors do not cause the object label. If there
is a correlation between the nuisance factors and the label
in data, we cannot learn causal classifiers. While identify-
ing such correlations is crucial, they are hard to quantify
on large, real-world vision datasets, because nuisance fac-
tors such as viewpoint and backgrounds, are difficult and
expensive to measure in natural images.

We propose to measure such nuisance factors via inter-
vening on the conditional generative models. Prior work
[23, 26] shows that nuisance transformations automatically
emerge in generative models (Figure 17), which enables
constructing desired nuisances via intervention. Given a
category y and random noise vector h0, we first generate
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Figure 3: Do unwanted correlations exist between the nui-
sance factors (e.g. backgrounds, viewpoint) and labels on
ImageNet? We measure correlation (y-axis) via how many
times the classification accuracy is better than chance on
the ImageNet validation set. The x-axis denotes the num-
ber of categories we select for prediction. To train causal
models, nuisance factors should not be predictable for la-
bels (chance). Our generative interventions (GenInt) reduce
the unwanted correlations from the data better than existing
data augmentation strategies [51, 13, 19, 38].

an exemplar image x = G(h0,y). We then conduct in-
tervention z to get the intervened noise vector h∗0, and the
intervened image x∗ = G(h∗0,y), which corresponds to
changing the viewpoints, backgrounds, and scene context
of the exemplar. We thus get data with both image x∗ and
the corresponding nuisance manipulation z. Implementa-
tion details are in the supplementary.

We train a model that predicts the nuisances z from in-
put image x∗. This model can then predict nuisances z from
natural images x. We read out the correlation between the
nuisance z and label y by training a fully-connected classi-
fier with input z and output y. We measure the correlations
via the times the classifier outperforms random. Generative
models may capture only a subset of the nuisances, thus our
estimated correlations are lower bounds. The true correla-
tions maybe even more significant.

In Figure 3, the training data of five established methods
[21, 51, 13, 19, 38] contains strong correlations that are un-
desirable. On the original ImageNet data, the undesirable
correlation in the data is up to 8 times larger than chance.
Our generative interventions reduce the unwanted correla-
tions from the data significantly, naturally leading to robust
classifiers that use the right cause.

3.2. Causal Graph

We build our causal graph based on the correlation anal-
ysis. We know that nuisances do not cause the label (context
‘hand’ does not cause the category ‘ladle’), and there is no
additional common outcome variable (collider) in our cor-
relation prediction. If the correlation between the nuisances
and the label is not chance, then there exists a confounder
C that causes both Z and Y .

Figure 12(a) shows our causal graph for image recogni-
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Figure 4: Causal graph for image classification. Gray vari-
ables are observed. (a) F is the variable that generates the
object features. The unobserved confounder C causes both
the background featuresZ and label Y , which creates a spu-
rious correlation between the image X and label Y . (b) An
ideal intervention blocks the backdoor path from Z to C,
which produces causal models. (c) In practice, we cannot
guarantee to intervene on all the Z variables. However, by
properly intervening on even a small set of nuisance fac-
tors Zi, the confounding bias of the observed distribution is
mitigated, which is theoretically proven by Theorem 3.

tion. We denote the unobserved confounder as C, which
produces nuisance factors Z, and the corresponding anno-
tated categorical label Y . Z produces the nuisance features
XZ in images. There is another variable F that generates
the core object features XF , which together with XZ con-
structs the pixels of a natural image X . There is no direct
arrow from F to Y since Y ⊥⊥ F |X , i.e., image X con-
tains all the features for predicting Y . We can observe only
X but not XZ or ZF separately. We draw a causal arrow
from X to Y . Since nuisances Z are spuriously correlated
to the label but not causing the label Y , classifiers are not
causal if they predict Y from the nuisances Z better than
chance. Note that “while a directed path is necessary for a
total causal effect, it is not sufficient [36].” Thus, though
there is a path Z → X → Y , Z does not cause Y .

3.3. Causal Discriminative Model

Generative interventions help in eliminating spurious
correlations (Figure 3 and Section 3.1), leading to better
generalization. We denote the causality from X to Y to
be P (y|do(x)), which is the treatment effect of an input
image X on label Y . To capture the right cause via corre-
lations learned by empirical risk minimization, we need to
construct data such that P (Y |do(X)) = P (Y |X).

Natural images are often biased by unobserved con-
founding factors that are common causes to both the image
X and the label Y . A passively collected vision dataset only
enables us to observe the variables X and Y . Theoretically,
we cannot identify the causal effect P (Y |do(X)) in Figure
12(a) with only the observed joint distribution P (X,Y ) be-
cause there is an unobserved common cause.

We thus want to collect faithful data independent of the
confounding bias, so that we can identify the causal ef-
fect with only the observed data. We need to intervene on
the data-generation process for the nuisances Z to be in-

dependent to the confounders, while keeping the core ob-
ject features F unchanged. In the physical world, such
interventions correspond to actively manipulating the cam-
era or objects in the scene. In our paper, we perform such
interventions via steering the generative models. The out-
come of this intervention on Z is visualized in Figure 12(b),
which manipulates the causal graph such that dependencies
arriving at Z are removed. Removing the backdoor, the
correlation is now equal to the causality, i.e., P (Y |X) =
P (Y |do(X)). While this result is intuitive, performing per-
fect intervention in practice is challenging due to the com-
plexity of the natural image distribution.

3.4. Causal Effect Bound

Imperfect interventions can eliminate only some spuri-
ous correlations. Though it is theoretically impossible to
calculate the exact causal effect P (y|do(x)) when spurious
correlations are not totally removed, we can still estimate
the lower and upper bound for P (y|do(x)).

Given the observed joint distribution P (x,y), Pearl [33]
identified that P (y|do(x)) can be bounded by P (x,y) ≤
P (y|do(x)) ≤ P (x,y)+1−P (x), which can be estimated
by existing discriminative models without interventions.

Prior work augments the data by sampling from the
GANs without explicit intervention [49, 7, 16, 17], which
will yield the same causal bound as the original data. Since
GANs capture the same distribution as the observational
training set, the spurious correlations remain the same. The
sampled transformations Z in Figure 12 (a) are still depen-
dent on the confounders C. Thus, augmenting training data
with GANs [38], without intervention is not an effective al-
gorithm for causal identification.

In this paper, we aim to identify a tighter causal effect
bound for P (y|do(x)) using generative interventions. This
is desirable for robustness because it removes or reduces the
overlap between the causal intervals, promoting causal pre-
dictions. Section 3.3 establishes that perfect interventions
eliminate all spurious correlation and leads to better gener-
alization. In practice, our generative interventions may only
eliminate a subset of spurious correlations Zi, while other
nuisances ZU remain unobserved and untouched. The next
question is then: what generative intervention strategy is
optimal for tightening the causal effect bound? We derive
the following theory:

Theorem 1 (Effective Intervention Strategy). We denote
the images as x. The causal bound under intervention zi is
thusP (y,x|zi) ≤ P (y|do(x)) ≤ P (y,x|zi)+1−P (x|zi).
For two intervention strategies z1 and z2, z1 ⊂ z, z2 ⊂ z,
if P (x|z1) > P (x|z2), then z1 is more effective for causal
identification.

Proof. Figure 12(c) shows the causal graph after interven-
tion Zi, where Zi ⊥⊥ Y |X . We add and remove the same
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term
∑
c P (y,x, c|zi):

P (y|do(x)) =
∑
c

P (y|x, zi, c)P (c) (Backdoor Criteria)

=
∑
c

P (y,x, c|zi) +
∑
c

P (y|x, zi, c)(P (c)− P (x, c|zi))

Since 0 ≤ P (y|x, zi, c) ≤ 1, we have the lower and
upper bounds. We denote δ1 = P (x|z1) − P (x|z2),
thus δ1 > 0. In the causal graph (Figure 12(c)), since
we intervene on zi, all incoming edges to zi are re-
moved; we then have zi ⊥⊥ y|x and P (x,y|zi) =
P (y|x, zi)P (x|zi) = P (y|x)P (x|zi). Therefore δ2 =
P (x,y|z1) − P (x,y|z2) = δ1 · P (y|x). Since appar-
ently 0 < P (y|x) < 1, we have that 0 < δ2 < δ1.
Thus we obtain [P (y,x|z1), P (y,x|z1) + 1− P (x|z1)] ⊂
[P (y,x|z2), P (y,x|z2) + 1 − P (x|z2)], which means the
intervention z1 results in a tighter causal effect bound.

Our theorem shows that: the optimal intervention strat-
egy should maximize P (x|z), which will tighten the causal
effect bound P (y|do(x)). Also, the intervention strategy
should be identically selected across all categories, so that
they are independent of the confounding bias. While there
are different choices of intervening on the generative model
to create independence, we empirically select our genera-
tive intervention strategy that increases P (x|z), which we
will discuss in Section 5.4.

4. Method
We show how deep generative models can be used to

construct interventions on the spuriously correlated features
in the causal graph. We combine these results to develop a
practical framework for robust learning.

4.1. Learning Objective

We minimize the following training loss on our inter-
vened data:

L =Le(φ(X),Y) + λ1Le(φ(Xint),Y
′)

+ λ2Le(φ(Xitr),Y
′′)

(1)

where Le denotes the standard cross entropy loss and λi ∈
R are hyper-parameters controlling training data choice. We
denote the original data matrix as X with target labels Y;
the generated data matrix as Xint (Section 4.2) with target
labels Y′; the transfered data as Xitr (Section 4.3) with
target labels Y′′; and the discriminative classifier as φ.

The last two terms of this objective are the interventions.
In the remainder of this section, we present two different
ways of constructing these interventions.

4.2. Generative Interventions

We construct interventions using conditional generative
adversarial networks (CGAN). We denote the i-th layer’s

hidden representation as hi. CGAN learns the mapping
x = G(h0,y), where h0 ∼ N (0, I) is the input noise,
y is the label, and x is a generated image of class y that
lies in the natural image distribution. CGANs are trained
on the joint data distribution P (x,y). While we can use
any type of CGANs, we select BigGAN [10] in this paper
since it produces highly realistic images. In addition, gen-
erative models learn a latent representation hi equivariant
to a large class of visual transformations and independent
of the object category [23, 26], allowing for controlled vi-
sual manipulation. For example, GANSpace [23] showed
that the principal components of hi correspond to visual
transformations over camera extrinsics and scene proper-
ties. The same perturbations in the latent space will produce
the same visual transformations across different categories.
Figure 17 visualizes this steerability for a few samples and
different transformations. This property enables us to con-
struct a new training distribution, where the nuisance fea-
tures Z are not affected by the confounders.

Our generative intervention strategy follows the
GANSpace [23] method, which empirically steers the GAN
with transformations independent of the categories. It con-
tains three factors: the truncation value, the transformation
type, and the transformation scale. The input noise h0 is
sampled from Gaussian noise truncated by value t [10]. We
define the transformations to be along the j-th principal
directions rj in the feature space [23], which are orthogonal
and captures the major variations of the data. We select the
top-k significant ones {r1, r2, ..., rk} as the intervention
directions. We then intervene along the selected directions
with a uniformly sampled step size s′ from a range [−s, s].
We intervene on the generator’s intermediate layers with
h∗i = hi + σs′rj − µ, where h∗i are the features at
layer i after interventions, σ is the standard deviation of
noise on direction r, and µ is the offset term. After the
intervention, we follow the method in GANSpace [23] to
recover h∗0 with regression and generate the new image
x∗ = G(h∗0,y). Using conditional generative models, we
produce the causal features XF by specifying the category.
Our intervention removes the incoming edge from C to Zi
(Figure 12 (c)). We denote the intervention procedure as
function I , and rewrite the generative interventions as:

Xint = I(t, s, k,Y′)

Based on our Theorem 3, we choose the hyper-parameters
t, k, s for intervention Z that maximizes P (x|z). We show
ablation studies in Section 5.4.

4.3. Transfer to Natural Data

Maintaining the original training data X will add con-
founding bias to models. While our theory shows that our
method still tightens the causal effect bound under the pres-
ence of spurious correlations, it is desirable to eliminate as
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ResNet 18 ResNet 152
Std. Augmentation Add. Augmentation Std. Augmentation Add. Augmentation

Training Distribution top1 top5 top1 top5 top1 top5 top1 top5

ImageNet Only [21, 6] 20.48% 40.64% 24.42% 44.39% 30.00% 48.00% 37.43% 59.10%
Stylized ImageNet [19] 18.39% 37.29% 22.81% 42.27% 31.64% 52.56% 36.17% 57.95%
Mixup [51] 19.12% 37.78% 24.05% 44.17% 34.27% 55.68% 38.61% 60.36%
AutoAug [13] 21.20% 41.26% 21.20% 41.26% 33.96% 55.81% 33.96% 55.81%
GAN Augmentation [38] 20.63% 39.77% 23.72% 43.67% 33.17% 54.59% 36.37% 58.88%

GenInt (ours) 22.07% 41.94% 25.71% 46.39% 34.47% 55.63% 39.21% 61.06%
GenInt with Transfer (ours) 22.34% 41.65% 27.03% 48.02% 34.69% 55.82% 39.38% 61.43%

Table 1: Accuracy on the ObjectNet test set versus training distributions. By intervening on the training distribution with
generative models, we obtain the state-of-the-art performance on the ObjectNet test set, even though the model was never
trained on ObjectNet.

many spurious correlations as possible. We will therefore
also intervene on the original dataset.

One straightforward approach is to estimate the latent
codes in the generator corresponding to the natural images,
and apply our above intervention method. We originally
tried projecting the images back to the latent space in the
generative models [53, 2], but this did not obtain strong re-
sults, because the projected latent code cannot fully recover
the query images [9].

Instead, we propose to transfer the desirable generative
interventions from Xint to the original data X with neural
style transfer [18]. The category information is maintained
by the matching loss while the intervened nuisance factors
are transferred via minimizing the maximum mean discrep-
ancy [30]. Without projecting the images to the latent code,
the transfer enables us to intervene on some of the nuisance
factors z in the original data, such as the background. The
transfer of the generative interventions I(t, k, s,Y′) to nat-
ural data X is formulated as:

Xitr = T (I(t, k, s,Y′),X)

where T denote the style transfer mapping. The correspond-
ing label Y′′ is the same label as for X. Please see supple-
mental material for visualizations of these interventions.

5. Experiments
We present image classification experiments on four

datasets — ImageNet, ImageNet-V2, Imagenet-C, and Ob-
jectNet — to analyze the generalization capabilities of this
method and validate our theoretical results. We call our ap-
proach GenInt for generative interventions, and compare
the different intervention strategies.

5.1. Datasets

In our experiments, all the models are first trained on
ImageNet [14] (in addition to various intervention strate-
gies). We train only on ImageNet without any additional

data from other target domains. We directly evaluate the
models on the following out-of-distribution testing sets:

ObjectNet [6] is a test set of natural images that removes
background, context, and camera viewpoints confounding
bias. Improving performance on ObjectNet—without fine-
tuning on it—indicates that a model is learning causal fea-
tures. ObjectNet’s policy prohibits any form of training on
the ObjectNet data. We measure performance on the 113
overlapping categories between ImageNet and ObjectNet.

ImageNet-C [22] is a benchmark for model general-
ization under 15 common corruptions, such as ’motion,’
’snow,’ and ’defocus.’ Each corruption has 5 different in-
tensities. We use mean Corruption Error (mCE) normalized
by AlexNet as the evaluation metric [22]. Note that we do
not train our model with any of these corruptions, thus the
performance gain measures our model’s generalization to
unseen corruptions.

ImageNet-V2 [40] is a new test set for ImageNet, aiming
to quantify the generalization ability of ImageNet models.
It contains three sampling strategies: MatchedFrequency,
Threshold0.7, and TopImages. While current models are
overfitting to the ImageNet test set, this dataset measures
the ability to generalize to a new test set.

5.2. Baselines

We compare against several established data augmenta-
tion baselines:

Stylized ImageNet refers to training the model using
style transferred dataset [19], which trains classifiers that
are not biased towards texture.

Mixup [51] does linear interpolation to augment the
dataset. We use their best hyperparameters setup (α = 0.4).

AutoAug [13] systematically optimizes the strategy for
data augmentation using reinforcement learning.

GAN Augmentation refers to the method that augments
the ImageNet data by directly sampling from the BigGAN
[38]. They provide an extensive study for hyper-parameter

6



Model mCE
y Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

AlexNet 100.00 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

R
es

N
et

18
[2

1] ImgNet Only [21] 87.16 89.5 90.4 93.0 86.01 93.3 87.7 90.0 87.5 86.4 80.0 73.7 80.5 91.5 85.5 92.4
Stylized ImgNet [19] 80.83 79.1 80.9 81.7 81.7 87.6 80.0 90.0 78.3 80.2 76.2 72.5 77.2 84.1 76.2 86.7
Mixup [51] 86.06 86.8 88.1 90.8 88.7 95.6 89.1 89.3 82.5 72.8 71.9 75.9 76.5 96.2 89.5 97.2
AutoAug [13] 84.00 84.3 83.7 84.5 87.9 93.6 87.7 93.5 85.7 83.4 71.0 67.4 63.5 97.8 85.3 90.5
GAN Augmentation [38] 86.48 86.4 87.5 90.5 87.0 92.4 87.2 90.3 88.0 86.3 82.8 73.3 82.8 90.7 84.5 87.5
GenInt (ours) 74.68 67.0 68.4 67.3 75.0 80.5 76.0 84.2 77.4 75.9 77.5 68.8 76.6 87.5 59.8 77.5

R
es

N
et

15
2

[2
1] ImgNet Only [21] 69.27 72.5 73.4 76.3 66.9 81.4 65.7 74.5 70.7 67.8 62.1 51.0 67.1 75.6 68.9 65.1

Stylized ImgNet [19] 64.19 63.3 63.1 64.6 66.1 77.0 63.5 71.6 62.4 65.4 59.4 52.0 62.0 73.2 55.3 62.9
Mixup [51] 66.43 69.0 71.1 73.8 67.3 83.4 65.5 74.6 63.5 56.9 55.2 49.4 62.4 75.4 65.0 63.7
AutoAug [13] 69.20 71.7 72.8 75.6 67.2 82.1 67.7 76.7 70.3 67.7 61.8 50.5 65.0 76.0 68.3 64.6
GAN Augmentation [38] 69.01 71.8 73.1 75.9 67.3 82.3 67.5 76.2 69.9 68.1 59.2 51.3 62.5 76.6 67.7 65.7
GenInt (ours) 61.70 59.2 60.2 62.4 60.7 70.8 59.5 69.9 64.4 63.8 58.3 48.7 61.5 70.9 55.2 60.0

Table 2: The mCE ↓ rate (the smaller the better) on ImageNet-C validation [22] set with 15 different corruptions. Our GenInt
model, without training on any of the corruptions, reduces the mCE by up to 12.48%. From column ‘Gauss.’ to column
‘JPEG,’ we show individual Error Rate on each corruption method. Without adding similar corruptions in the training set,
our generative causal learning approach learns models that naturally generalize to unseen corruptions.

ImageNet-V2 Grouped by Sampling Strategy [40] Original
“TopImages” “Threshold0.7” “MatchedFrequency” ImageNet Val

Training Distribution top1 top5 top1 top5 top1 top5 top1 top5

R
es

N
et

18
[2

1]

ImageNet Only [21] 71.77% 91.11% 65.41% 87.39% 56.18% 79.35% 68.82% 88.96%
Stylized ImageNet [19] 69.55% 89.97% 62.92% 85.38% 54.13% 77.30% 66.95% 87.42%
Mixup [51] 69.90% 90.16% 63.42% 86.40% 54.42% 77.94% 66.00% 86.93%
AutoAug [13] 72.05% 91.49% 65.32% 87.32% 56.25% 79.16% 69.24% 88.91%
GAN Augmentation [38] 72.01% 91.24% 65.72% 87.58% 56.43% 79.42% 69.19% 88.85%

GenInt (ours) 72.80% 91.89% 66.26% 88.30% 57.86% 80.11% 70.41% 89.59%
GenInt with Transfer (ours) 72.84% 91.85% 66.49% 88.11% 57.35% 79.61% 70.25% 89.33%

R
es

N
et

15
2

[2
1]

ImageNet Only [21] 81.01% 96.21% 76.17% 94.12% 67.76% 87.57% 78.57% 94.29%
Stylized ImageNet [19] 79.40% 95.72% 74.02% 92.88% 65.12% 86.22% 77.27% 93.76%
Mixup [51] 80.68% 96.28% 75.91% 94.00% 67.11% 87.66% 78.78% 94.45%
AutoAug [13] 80.61% 96.30% 75.90% 94.06% 67.35% 87.61% 78.95% 94.56%
GAN Augmentation [38] 80.10% 96.00% 75.60% 93.74% 66.89% 87.04% 78.53% 94.21%

GenInt (ours) 80.77% 96.38% 76.20% 94.24% 67.74% 87.83% 79.46% 94.71%
GenInt with Transfer (ours) 81.24% 96.28% 76.60% 93.95% 68.08% 87.70% 79.59% 94.79%

Table 3: Accuracy on ImageNet V2 validation set [40] and original ImageNet validation set. Our method improves the
performance upon the baselines, which suggests our causal learning approach does not hurt the performance on original test
set while becoming robust.

selection. We use their best setup as our baseline: 50% of
synthetic data sampled from BigGAN with truncation 0.2.

ImageNet only refers to training the standard model on
ImageNet dataset only [21].

5.3. Empirical Results

Our GenInt method demonstrates significant gains on
four datasets over five established baselines. We report
results for two different network architectures (ResNet18,
ResNet152). All ResNet18 models are trained with SGD
for 90 epochs, we follow the standard learning rate sched-
ule where we start from 0.1, and reduce it by 10 times ev-
ery 30 epochs. For ResNet152 models, we train “ImageNet
only” models using the above mentioned method, and fine-
tune all the other methods from the baseline for 40 epochs
given that it is computationally expensive to train ResNet-
152 models from scratch. For GenInt, we all use λ1 = 0.05

and λ2 = 0 for ResNet18 and λ1 = 0.2 and λ2 = 0 for
ResNet152. For GenInt with Transfer, we use λ1 = 0.02
and λ2 = 1 for our experiments on Resnet18 with standard
augmentation, λ1 = 0.05 and λ2 = 1 for our experiments
on Resnet18 with additional augmentation, and λ1 = 0.2
and λ2 = 0.2 for our finetuning on ResNet152. We select
hyperparameters of our intervention strategy in Section 5.4.
Implementation details are in the supplementary.

ObjectNet: Table 6 shows that our model can learn more
robust features, and consequently generalizes better to Ob-
jectNet without any additional training. Our results consis-
tently outperform the naive sampling from generative mod-
els [38] and other data augmentation strategies [51, 19, 13]
for multiple metrics and network architectures, highlighting
the difference between traditional data augmentation and
our generative intervention. Our approach enjoys benefits
by combining with additional data augmentations, demon-
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Table 1

None Weak Medium Strong

log P(x|z) -5.438 -5.289 -5.245 -5.242

log P(x|z) -5.296 -5.147 -5.112 -5.109

log P(x,y|z) -10.02 -9.49 -9.58 -9.99

ImageNet Top1 0.1729 0.3032 0.3896 0.3996

ObjectNet Top 1 0.0164 0.0348 0.0598 0.0605

ImageNet Top 5 0.3472 0.526 0.6274 0.637

ObjectNet Top 5 0.0584 0.0992 0.1561 0.1587
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Figure 5: As the strength of the intervention increases, the
value of logP (x|z) increases, which improves the perfor-
mance of ResNet-18 model.
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Figure 6: logP (x|z) for causal effect bound under dif-
ferent intervention strategies. The x-axis of each subfig-
ure changes one hyper-parameter for intervention strategy:
truncation value t (left), PCA number k (middle), and the
intervention scale s (right). Based on theorem 3, we choose
the hyper-parameters t, k, s that produces the highest value
for logP (x|z) from individual figure.

strated by the differences between the “Std. Augmentation”
columns and the “Add. Augmentation” columns.1 This
improvement suggests that our generative intervention can
manipulate additional nuisances (viewpoints, backgrounds,
and scene contexts) orthogonal to traditional augmentation,
which complements existing data augmentation methods.
Moreover, our results suggest that intervening on the gener-
ative model is more important than just sampling from it.

ImageNet-C: To further validate that our approach
learns causality, and not just overfits, we measure the same
models’ generalization to unseen corruptions on ImageNet-
C. We evaluate performance with mean corruption error
(mCE) [22] normalized by CE of AlexNet. Table 2 shows
that directly sampling from GAN as augmentation (GAN
Augmentation) slightly improves performance (less than
1%). Stylized ImageNet achieves the best performance
among all the baselines, but it is still worse than our ap-
proach in mCE. In addition, Stylized ImageNet hurts the
performance on ObjectNet, which suggests its high perfor-
mance on corruptions is overfitting to the correlations in-
stead of learning the causality. Our approach outperforms
baseline by up to 12.48% and 7.57% on ResNet18 and
ResNet152 respectively, which validates that our generative
interventions promote causal learning.

ImageNet and ImageNet-V2: Table 3 shows the accu-
racy on both validation sets. Some baselines, such as Styl-
ized ImageNet, hurt the performances on the ImageNet val-
idation set, while our approach improves the performance.

1Standard augmentation only uses random crop and horizontal flips [1].
Additional augmentation method uses rotation and color jittering [46].

Truncation ImageNet
Training Dist. top1 top5

Obervational GAN [38] 1.0 39.07% 62.97%
Obervational GAN [38] 1.5 42.65% 65.92%
Obervational GAN [38] 2.0 40.98% 64.37%
Interventional GAN (ours) 1.0 45.06% 68.48%

Table 4: We show performance for ResNet50 trained only
on BigGAN. Our intervention model surpasses performance
of the best established benchmark [38]

Overall, without trading-off the performance between
different datasets, our approach achieves improved perfor-
mance for all test sets, which highlights the advantage of
our causal learning approach.

5.4. Analysis

Causal Bound and Performance: Does tighter causal
bound lead to a better classifier? Following Theorem
3, we measure the tightness of causal bound after inter-
vention, where we use the log likelihood logP (x|z) =∑
i

∑
x′
j
log(P (xi|x′j)P (x′j |z)), where xi is the query im-

age from the held out ImageNet validation set, and x′j is the
data generated by intervention z. We train ResNet18 on our
generated data.2 By varying the intervention strength, we
increase the value of P (x|z), which corresponds to a tighter
causal bound. Figure 5 shows that, as the causal bound get-
ting tighter (left), performance steadily increases (right).

Optimal Intervention Strategy: Since tighter causal
bound produces better models, we investigate the optimal
intervention strategy for tightening causal bounds. We
study the effect of changing t, k, s for our intervention on
the causal bound (Section 4.2). We conduct ablation studies
and show the trend in Figure 6. We choose t = 1, k = 60,
and s = 100% as our intervention strategy for tightest
causal bound, which produces logP (x|z) = −5.162 and
yields the optimal accuracy of 45.06% (Table 4) in practice.

Importance of Intervention: Our results show that cre-
ating interventions with a GAN is different from simply
augmenting datasets with samples from a GAN. To exam-
ine this, Table 4 shows performance on ImageNet when the
training sets only consist of images from the GAN. We use
the best practices from [38], which comprehensively stud-
ies GAN image generation as training data. Our results
show that creating interventions, not just augmentations,
improves classification performance by 2.4%-6.0%.

5.5. Model Visualization

By removing the confounding factors in the dataset, we
expect the model to learn to attend tightly to the spatial re-
gions corresponding to the object, and not spuriously cor-
related contextual regions. To analyze this, Figure 7 uses

2We sample an observational and intervention data from BigGAN with
truncation t = 0.5 [10]. Please see supplementary material for full details.
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Figure 7: We visualize the input regions that the model
uses to make predictions. Blue implies the model ignores
the region for discrimination, while red implies the region
is very discriminative. The white text shows the model’s
top prediction. The baseline frequently latches onto spu-
rious background context (e.g., hand spuriously correlated
with ladle, chair spuriously correlated with tablelamp), and
consequently makes the wrong prediction. Meanwhile, our
model often predicts correctly for the right reasons.

GradCAM [44] to visualize what regions the models use for
making prediction. While the baseline often attends to the
background or other nuisances for prediction, our method
focuses on the spatial features of the object. For example,
for the first ‘Broom’ image, the baseline uses spurious con-
text ‘hand,’ leading to a misprediction ‘Ladle,’ while our
model predicts the right ‘Broom’ by looking at its shape.
This suggests that, in addition to performance gains, our
model predicts correctly for the right reasons.

6. Conclusion
Fortifying visual recognition for an unconstrained envi-

ronment remains an open challenge in the field. We in-
troduce a method for learning discriminative visual models
that are consistent with causal structures, which enables ro-
bust generalization. By steering generative models to con-
struct interventions, we are able to randomize many features
without being affected by confounding factors. We show
a theoretical guarantee for learning causal classifiers under
imperfect interventions, and demonstrate improved perfor-
mance on ImageNet, ImageNet-C, ImageNet-V2, and the
systematically controlled ObjectNet.
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Confounded Causal
Test Accuracy Test Accuracy

Chance 10% 10%
Original Data 99.45% 8.261%
IRM [8] 87.32% 18.49%
Observational CVAE [45] 59.949% 11.255%
Interventional CVAE 58.478% 29.618%

Table 5: We show 10-way classification accuracy on the
Colored MNIST dataset. Color is a spurious correlation that
no longer holds during the causal test. Our generative inter-
vention strategy advances the state-of-the-art IRM method
by 11.12%

(a) Background 1 (b) Background 2

Figure 8: Illustration of color MNIST dataset. For each
digit category, we generate two different background colors.
The feature background color is spuriously correlated to the
category, where the confounder is us, the dataset creator.
But the observed data is only color digits and corresponding
targets.

7. Motivating Experiment
We create a controlled experiment to show that genera-

tive models can construct interventions for causal learning.
Our experiments demonstrate that generative models can in-
herently discover nuisances and intervene on the confound-
ing factors, creating extrapolated data beyond the training
distribution with confounding bias.

7.A. Controlled Example: Colored MNIST

Dataset: We analyze our model on MNIST, which al-
lows us to carefully control experiments. We use Colored
MNIST [8] where we explicitly introduce a confounding
bias c that affects the background color b for the training
set. This confounding bias does not exist in the test set. We
set two different background colors for each digit category
yi, i = 0 . . . 9. While the handwritten digit is the true cause,
the background color is spuriously correlated to the target.
A classifier that makes predictions based on the spurious
background correlation will have P (yi|b) 6= 1

10 , while the
causal classifier learns to be invariant to background-color
P (y1|do(b)) = P (y2|do(b)) = 1

10 . We show training ex-
amples for our manipulated colored MNIST in Figure 8.
By training models under Empirical Risk Minimization, the

11



Figure 9: The background color for each class without intervention in the observational VAE model. The generator fails to
generate digits with different background color from the training set, which demonstrates the importance of intervention.

Figure 10: The background color for each class in interventional CVAE. We intervene on two principal component directions
in the latent space. Despite the dataset being created with only 2 colors per category, new background colors emerge in
the generative model after interventions. This demonstrates the importance of intervening on generative models for creating
unbiased data.

model will learn the spurious correlations instead of the true
causal relationship, thus not generalizing well once the spu-
rious correlations change.

Experimental Setup: We validate this outcome by ex-
periment. The baseline is trained only on the original col-
ored data. For methods involving a generator, we train a
conditional variational auto-encoder (CVAE) [45] on the
observed joint distribution. Observational CVAE denotes
the classifier only trained on data sampled from an origi-
nal CVAE without intervention, corresponding to the ‘GAN
Augmentation’ method in our main paper. Our proposed
method is labeled Interventional CVAE, corresponding to

‘GenInt’ in our main paper, where we train classifiers on
data generated by intervening on the two principal direc-
tions in latent space. The intervention scale is uniformly
sampled from a given interval to cut off the dependency
on the category. Since the generative model captures the
MNIST joint distribution well, we use only the generative
interventional data without the original data.

7.B. Results

Visualization Results: In Figure 9, we visualize data
generated by observational CVAE. As we can see, the color
produced by observational CVAE is the same as the training
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Figure 11: Comparison of the background color for each
class for the original dataset (A), the observational CVAE
(B), and the interventional CVAE (C). New colors emerge
after intervening on the generative model. The background
color is randomized after interventions, so that it no long
spuriously correlates with the target label.

set—no new color emerges—which is due to observational
CVAE capturing the same joint distribution as the training
set. In Figure 10, we visualize what happens to the gen-
erated image background once we intervene on two major
directions in the generative models. New colors emerge
due to our intervention, thus we can randomize the features
affected by the confounding bias through proper interven-
tion. Figure 11 also demonstrates the difference between
the original dataset, the observational VAE, and the inter-
ventional VAE.

Invariant Risk Minimization: Recent work [8] pro-
poses an Invariant Risk Minimization(IRM) algorithm to
estimate invariant correlations across multiple training dis-
tributions, which is related to causal learning and enables
out-of-distribution generalization. IRM algorithm is shown
to work on binary colored MNIST classification. We imple-
ment IRM on our more challenging 10-way colored MNIST
dataset. Table 5 shows that our algorithm bypasses it by a
big margin on the “Causal Test Accuracy,” which demon-
strates the effectiveness of our algorithm for causal learning
in confounded data.

Quantative Results: Table 5 shows that the base-
line model performs well when the confounding bias per-
sists in the test set, but catastrophically fails (worse than
chance) once the spurious colors are changed. The CVAE
suffers from the same issue, demonstrating that data aug-
mentation with a CVAE is insufficient to learn robust mod-

els. The state-of-the-art solution on colorful MNIST is the
IRM, where the classifier is optimized across several differ-
ent environments. Our method, Interventional CVAE, dou-
bles the accuracy on the causal test set without substantial
decreases on the confounded test set, we also advance the
state-of-the-art IRM method by more than 10%. The re-
sults show that using generative interventions, our approach
can learn causal representations more effectively than non-
interventional methods.

8. Proof for Theoretical Analysis
We formalize the framework with Structural Causal

Models (SCMs) (Pearl, 2000, pp. 204-207). An SCM con-
tains < U, V, φ, P (U) >, where U is a set of unobserved
variables and V is the observed variables, φ is the set of
dependence functions, and P (U) encodes the uncertainty
of the exogenous variables. In our paper, V = {X,Y },
U = {C,F, Z, Ux, Uy}, we do not plotUx, Uy on the causal
graph explicitly. We assume that Ux, Uy are exogenous
variables that capture the uncertainty of variables X and Y ,
respectively. C is the unobserved confounding bias, which
causes the object image X and its corresponding label Y .
We validate the existence of C via the correlations analysis
experiment in Section 3.1. We assume P (U) satisfies the
Gaussian distribution, but it can also be any other distribu-
tion in our theory. We plot our causal graph in Figure 12 .
The functional relationship φ between the variables are as
follows:

Z := φz(C)

X := φx(Ux, F, Z)

Y := φy(Uy, X,C)

Following [33], we define the causal effect of variableX
on Y as follows:

Definition 1. The causality of variable X on Y , denoted
as P (Y |do(X)), is the effect of conducting X to Y while
keeping all the other variables the same.

Note that P (Y |do(X)) is different from P (Y |X). Since
P (Y |X) is the observational distribution, a change inX can
suggest a change in unobserved confounding bias under our
causal graph. It is possible that the observed change in X
is due to changes in confounding variables. The observed
P (Y |X) thus is not the same as P (Y |do(X)). To identify
the causal effect of P (Y |do(X)), we need to observe the
confounding bias, or intervene on X .

In Figure 1 in the paper, by observing variables that
block the back-doors from X to Y , we can learn the causal
effect from X to Y .

Theorem 2. One can identify the causal effect ofX on out-
come Y by observing the hidden factors C or Z.

13



X Y

C

F

Z

X Y

C

F

Z

X Y

C

F

ZUZi

(a) (b) (c)

Figure 12: Causal graph for image classification. Gray variables are observed. (a) F is the unobserved variable that generates
the object features. The unobserved confounder C causes both the background features Z and label Y , which creates a
spurious correlation between the image X and label Y . (b) An ideal intervention blocks the backdoor path from Z to C,
which produces causal models. (c) In practice, we cannot guarantee to intervene on all the Z variables. However, by properly
intervening on even a small set of nuisance factors Zi, the confounding bias of the observed distribution is mitigated, which
is theoretically proven by our theorem.

Proof. We denote the parent node of variable X in the
causal DAG graph as pax.

Then for C:

P (y|do(x)) =
∑
pax

P (y|x, pax)P (pax)

=
∑
pax,c

P (y|x, pax, c)p(e, c|x, pax)P (pax)

=
∑
pax,c

P (y|x, c)P (e, c|pax)P (pax)

=
∑
c

P (y|x, c)P (c)

Thus one can identify the causal effect of X on Y by
observing C.

For Z:

P (y|do(x)) =
∑
pax

P (y|x, pax)P (pax)

=
∑
pax,z

P (y|x, pax, z)p(z|x, pax)P (pax)

=
∑
paz

P (y|x, z)P (z|pax)P (pax)

=
∑
z

P (y|x, z)P (z)

Thus one can identify the causal effect of X on Y by
observing Z.

Given only the observational data, it is often impossible
to identify the exact causal effect of data. Instead, [33] pro-
posed the natural bound for the causal effect to restrict the
possible causal effect in a range.

Lemma 1. Given the observed joint distribution,
the natural bound for P (Y |do(x)) is bounded by
[P (X,Y ), P (X,Y ) + 1− P (X)].

Proof. We denote all the unobserved confounding factors
as u.

P (y|do(x)) =
∑
u

P (y|x, u)P (u)

=
∑
u

P (y|x, u)(P (u, x) + P (u)− P (u, x))

=
∑
u

P (x, y, u) +
∑
u

P (y|x, u)(P (u)− P (u, x))

Since 0 ≤ P (y|x, u) ≤ 1,

P (y|do(x)) ≥
∑
u

P (x, y, u) = P (x, y) (2)

P (y|do(x)) ≤
∑
u

(P (x, y, u) + (P (u)− P (u, x))) (3)

= P (x, y) + (1− P (x)) (4)

This illustrates the proof for natural bound.

Ideally, we desire a tighter causal bound. As we can see
in Figure 13, a tighter bound reduces the overlap of bound
intervals, and creates a margin between the intervals of the
probability of predicting different objects. If we can sepa-
rate the interval of the maximum category from the others,
we can predict the causal results even under bounded causal
effect.

Although observing all the confounding factors is impos-
sible for most vision tasks, there are some confounding fac-
tors that can be captured by generative models. We assume
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that we can intervene on a subset of the features caused by
the confounders. We can tighten the causal bound using our
intervention using generative models, which helps to learn
models that are more consistent with the true causal effect.
We propose the following theorem in the main paper:

Theorem 3. We denote the images as x. The causal bound
under intervention zi is thus P (y,x|zi) ≤ P (y|do(x)) ≤
P (y, x|zi) + 1 − P (x|zi). For two intervention strategies
z1 and z2, z1 ⊂ z, z2 ⊂ z, if P (x|z1) > P (x|z2), then z1
is more effective for causal identification.

Proof. Figure 1b shows the causal graph after interven-
tion where Z = Zi, Zi ⊥⊥ Y . We follow causal calculus
rules by Pearl [33] and add and remove the same term∑
c P (y, x, c|zi):

P (y|do(x)) =
∑
c

P (y|x, zi, c)P (c)

=
∑
c

P (y, x, c|zi)+∑
c

P (y|x, zi, c)(P (c)− P (x, c|zi))

Since 0 ≤ P (y|x, zi, c) ≤ 1, we have the lower and upper
bounds.

We denote δ1 = P (x|z1) − P (x|z2), thus δ1 > 0.
Since we intervene on zi in the causal graph of Figure 8b,
all incoming edges to zi are removed. Therefore, zi ⊥⊥ y|x
and P (x, y|zi) = P (y|x, zi)P (x|zi) = P (y|x)P (x|zi).
Next, let δ2 = P (x, y|z1) − P (x, y|z2), then δ2 = δ1 ·
P (y|x). Since 0 < P (y|x) < 1, then 0 < δ2 < δ1.
Thus we obtain [P (y, x|z1), P (y, x|z1) + 1 − P (x|z1)] ⊂
[P (y, x|z2), P (y, x|z2) + 1 − P (x|z2)], which means the
intervention z1 results in a tighter causal effect bound.

Though deep learning methods are non-linear, to provide
insights for the effect of intervening on a subset of variables,
we analyze an example under a linear model. The following
theorem 4 shows that, if the models are linear, then one can
estimate the causal effect with intervened Z.

Theorem 4. If all the variables follow a Gaussian distribu-
tion, and the functional relationships between the variables
are linear, then one can identify the causal effect by observ-
ing Z in Figure 4c, even though there remain unobserved
confounding factors.

Proof. Based on the linear assumption, Let Y = a1C +
bX+uy , X = a4F +a5Zi+a6ZU +ux. Our goal is to es-
timate P (Y |do(X)) which we denote as b = P (Y |do(X)).
The causal graph is shown in Figure 2b in the main paper.

Under a linear model, we conduct linear regression to
estimate the coefficient σzy between Zi and Y .

σzy = a5b

The confounding factors do not appear in this regression,
because X is an unobserved collider in the regression, thus
information cannot go to the confounders.

Then we conduct linear regression to estimate the coef-
ficient σzx between Z and X .

σzx = a5

where the path from z to x is the causal path.
Thus we can estimate the causal effect P (Y |do(X)) =

σzy

σzx
= b under linear model.

This linear example shows that by intervening only on
a subset of the confounding factors z, one can identify the
causal effect from x to y under unobserved confounders.
Compared with Section 3.1.1 in [24], we show that even
under a much weaker assumption where we can intervene
on only a subset of nuisance factors, we can learn causal
effect in linear models. This linear example also motivates
the reason for effectiveness of our method in a non-linear
setting.

In our main paper, we mentioned that ”Z produces the
nuisance features XZ in images. There is another variable
F that generates the core object features XF , which to-
gether with XZ constructs the pixels of a natural image X .
There is no direct arrow from F to Y since Y ⊥⊥ F |X , i.e.,
image X contains all the features for predicting Y . We can
observeX but notXZ orZF separately. ” We show the cor-
responding causal graph in Figure 14. If we can disentangle
XZ andXF , we can estimate the causal effect by predicting
Y from XF . However, given that the image pixels we ob-
serve are combinations of XF and XZ , we essentially use
the causal graph in Figure 12.

9. Calculating P (x|z) For Causal Effect Bound
9.A. Causal Bound and Performance

In Section 5.4, we empirically calculate the P (x|z) for
our causal effect bound. We describe the implementation
details here. Following Theorem 3, we measure the effec-
tiveness of our intervention using logP (x|z) given that log
is a monotonic function, which will not change the rela-
tive ranking of different P (x|z). Our theorem suggests that
a larger logP (x|z) results in a more effective intervention
strategy for causal identification. To estimate logP (x|z),
we sample x from the ImageNet validation set, which is a
widely used benchmark and approximates the true unknown
distribution. Other open-world data can also be used here in
future work.

We estimate the likelihood to query validation set of
images x given our intervention z. We denote the i-
th query image from the validation set as xi. The log
likelihood of producing the test set data is logP (x|z) =∑
i logP (xi|z) =

∑
i

∑
x′
j
log(P (xi|x′j)P (x′j |z)), where
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Figure 13: Tightened identification bound reduces the overlap on the bound for probabilities of the predicted labels, which
results in correct recognition when the bounds do not overlap.
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Figure 14: If we can disentangle the nuisances XZ and
causal feature XF in the images, we get the above causal
graph. We can identify causality by directly predicting Y
fromXF . We can measure the spurious correlations by pre-
dicting Y fromXZ . However, disentanglingX into the nui-
sances XZ and causal feature XF is still an open challenge.

x′ is the data we generate in the training set. P (xi|x′j) is cal-
culated through the cross-entropy loss of the CNN features
after normalization. Since the generator is a deterministic
network given the intervention, we have P (x′j |z) = 1. Thus
P (xi|z) =

∑
x′
j
P (xi|x′j). We approximate the marginal-

ization of x′j from generated dataset which is nearest to the
query image. A larger value of logP (x|z) indicates the
generated image under intervention z is closer to the real
data distribution, which according to Theorem 3, tightens
the causal identification bound.

We randomly sample half of ObjectNet and ImageNet
overlapping categories to calculate logP (x|z). For each
category, we generate 1000 images for x′j and use all the
50 validation data for xi. We use a pre-trained ResNet18
model for extracting the CNN features, where we use the

features from the penultimate layer.

We first study the impact of logP (x|z) on the actual
classifier generalization ability. We change the value of
logP (x|z) using different interventional strengths. We set
truncation value to be 0.5 for the experiments. We vary the
strength of the intervention by controlling the scale of the
randomness. For the listed datasets, we intervene with a dif-
ferent intervention scale and sample 2000 images for 1000
ImageNet categories each. Thus the intervention strength is
controlled by how much we randomize the generation pro-
cess: (1) For ’None’ interventional data, we sample from
the observational GAN. (2) For weak interventional data,
for each category we sample 50 random seeds, and for each
seed, we intervene on 4 randomly selected PCA directions
from the top 20 PCA components, and generate 10 data
points for each PCA transformation within s ∈ [−5, 5] uni-
formly. (3) For medium interventional data, we first sam-
ple 500 random noise vectors, then intervene for each noise
with 2 randomly selected PCA directions among the top
20 PCA components. Then we randomly sample 2 images
from s ∈ [−7, 7]. (4) For strong interventional data, we
first sample 1000 random noise vectors, then intervene on
each noise vector with 2 randomly selected PCA direction
among the top 20 PCA components. Then we randomly
sample one image from s ∈ [−9, 9].

As shown in Figure 5 in the main paper, P (x|z) and the
model performance increases as the intervention is strength-
ened. It demonstrates that a proper intervention strategy
that increases P (x|z) increases the models’ performance,
which also matches our Theorem 3. Moreover, in practice,
the intervened GAN achieved much higher accuracy than
the GAN method on both ImageNet and ObjectNet test set.
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9.B. Optimal Intervention Strategy

We conduct an ablation study for hyperparameters for
intervention strategy, where we fix all the other variables
and change only the hyperparameters we studied. Our paper
finally uses the best setup as our intervention strategy.

Our intervention strategy contains three components: the
truncation value for the BigGAN generator, the number of
PCA direction selected, and the step size for the interven-
tion scale. For all intervention strategies, we fix the num-
ber of generated data to be 500 for each category. For the
interventional scale, we first construct a reference scale as
a unit, then vary our intervention scale with relative per-
centage. We visualize each PCA component to specify a
reference scale for interventional range, such that after the
intervention in the given direction, the image still looks re-
alistic. The intervention range is small for the largest PCA
component, and large for the non-top PCA directions. For
example, we use [−3, 3] for topmost PCA, and [−12, 12]
for 40-th PCA. As we only visual check a subset of all the
categories, this range value is just a rough estimate for our
reference, not the true range. We refer to the intervention
scale via the relative size to the reference intervention.

The setup for our three ablation study is as follows:
Truncation Value We use the top 60 PCA with the

100% interventional scale to the reference size. We vary
the truncation value from 0.125 to 1. We plot the calculated
logP (x|z) value.

Top K PCA value selected. We use truncation 1 with
100% of the intervention range for this experiment. We ex-
periment with intervention on 1 PCA to top 80 PCA inter-
vention, and plot logP (x|z) value.

Interventional Scale s. We use truncation 1 with top 60
PCA component for this experiment. We vary the interven-
tional scale based on their relative number to our predefined
reference value, where the scale is selected from 10% to
130%. We find 100% to our reference intervention strength
yield the highest value for logP (x|z).

The results are visualized in Figure 6 in the main pa-
per. We select the hyperparameters that produce the highest
P (x|z) for our experiments.

10. Setup for Correlation Analysis

In the main paper, we show that nuisance transforma-
tions such as viewpoints, backgrounds, and scene context
automatically emerge in deep generative models. We hy-
pothesise that there are spurious correlations between the
nuisances and the object label. Given that nuisance factors
are not the true cause for the label, simply predicting the
label with images containing those spurious nuisances will
result in non-causal models that are not robust.

We thus propose to quantify nuisances via generative
models. We use the BigGAN [10] [10] trained on ImageNet

to perform the empirical analysis. BigGAN is a conditional
generative model. Given a category y and random noise
vector h0, BigGAN generates an image x = G(h0,y). The
truncation factor in BigGAN controls the trade-off between
quality and diversity. With small truncation 0.3, we find
that BigGAN not only generates highly realistic images but
highly discriminative viewpoint with representative back-
grounds. We show examples in Figure 15. We treat the
generated images as the exemplar for the given category.

We then conduct interventions z to get the intervened
noise vector h∗0, and the intervened image x∗ = G(h∗0,y),
which corresponds to changing the viewpoints, back-
grounds, and scene context of the exemplar. Our goal is
to construct a dataset that contains images and their cor-
responding interventions. We aim to exhaust all the inter-
ventions z on the given image, such that we can predict
interventions well given an image. For each intervention
z, we intervene along a given PCA direction with a scale
sampled randomly from a given range. We exhaust the top
60 PCA directions but remove 5 redundant transformations.
This setup makes sure each PCA component correspond to
some visual transformation that aligns with human percep-
tion. We focus on understanding the interpretable transfor-
mations, but adding more PCA directions produces stronger
correlations. We specify the scale for each PCA direction to
be within 12. For each category, we generate 10 random ex-
emplars h0. For each given h0, we exhaust top 60 studied
PCA directions and we sample 5 random intervention scale
for each PCA direction.

We thus get data with both image x∗ and the correspond-
ing nuisance manipulation z. We use 80% of the data for
training, and 20% of the data for validation. We train a
ResNet34 [21] model as backbone, which regresses the z
intervention scale value for each PCA direction given an
input image x. We use L1 loss. Our training achieves an
error of 0.009 and a validation error of 0.36, while the ran-
dom guessing L1 error is around 5.6. Our trained regression
model is category agnostic, thus the produced information
does not contain category information. We further validate
this by training an MLP model to predict the category in-
formation from the output nuisances, the model can only
produce random guessing results. Thus we conclude our
model can predict the nuisances well despite some error.

We input ImageNet image to our trained nuisance pre-
dictor and output the corresponding nuisances z. We then
train a 4 layer MLP model, with hidden units 512, to predict
the ImageNet test label from the extracted nuisances fac-
tors. We find the learned MLP model can generalize well to
the ImageNet test set, suggesting that nuisances factors are
correlated with the label, which is shown in Figure 3 in the
main paper. We also input data processed with mixup, styl-
ize transfer, auto augmentation method, and GAN augmen-
tation method, we then compute their corresponding corre-
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Figure 15: The exemplars generated from the BigGAN [10] model with truncation 0.3. From here we intervene the image
with interventions of scale up to 40 times of the truncation value. While the initial images may contain minor nuisances vari-
ations, it is negligible compared with our intervention strength. We can thus infer the intervention value from the generated
exemplars to the query images with reasonable precision (validation L1 error 0.36, while random model produces an error of
6).

lations between the predicted nuisances and the labels. Re-
sults are shown in Figure 3 in the main paper, where we can
see correlations are still there. However, after inputting our
GenInt data, the correlations disappear, which suggests that
our intervention removes the correlations.

11. Experimental Setup and Ablation Study for
Hyperparameters

11.A. Implementation details

We used Nvidia GeForce RTX 2080Ti GPU with 11 GB
memory for experiments. As shown in Table 6, we denote
the model trained with only ImageNet data with as ‘A,’ the
model trained with both ImageNet data and the interven-
tional data Xint as ‘B,’ the model trained with original Im-
ageNet and Transferred interventional data Xitr as ‘C,’ and
the model trained with all data as type ‘D’. We also provide
code in our supplementary.

ResNet18 training details: For all A,B,C,D model type,
we train the model with batch size 256 for ImageNetX . For
B, we use λ1 = 0.05 and batch size 64 for interventional
data Xint term. For the type C model, we train the Ima-
geNet model with transferred interventional data Xitr with
λ2 = 1, where we both use a batch size of 256. We use the
same parameter setup for both the training with standard

augmentation and the additional augmentation. For type D
model, we directly fine-tune the pre-trained GenInt Trans-
fer model with λ1 = 0.05 for additional augmentation and
λ1 = 0.02 for standard augmentation, with batch size 64
and λ2 = 1, batch size 256. We will provide an ablation
study for the batch size and λ hyperparameters in the next
subsection, which will show that our method constantly and
robustly outperforms the baseline under a wide range of hy-
perparameters.

ResNet152 training details: We choose batch size as
256 for original ImageNet data X for models A,B,C. For
model B and model C, we use λ1 = 0.2, λ2 = 0.2 and
batch size with 64. For model D, due to the GPU memory
limitation, we reduce the batch size of original ImageNet
data X to be 192. We also use λ1 = 0.2, λ2 = 0.2 and
batch size 64 for the interventional data. We finetune from
model C.

11.B. Ablation Study for Hyper-parameters

Besides the hyperparameters for intervention strategy
(discussed in Section 5.4 in our main paper), our method
also needs to specify the value for λ and the corresponding
batch size for the data. We offer ablation studies for the λ
and batch size here.

On ResNet18 models, we conduct an ablation study for
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Type ImageNet Interventional Data Transferred Interventional Std. Augmentation Add. Augmentation
X Xint Data Xitr top1 top5 top1 top5

Baseline A X 20.48% 40.64% 24.42% 44.39%
Ours B X X 22.07% 41.94% 25.71% 46.39%
Ours C X X 22.29% 41.76% 27.02% 47.51%
Ours D X X X 22.34% 41.65% 27.03% 48.02%

Table 6: Ablation study for different generative interventions in our approach. On ResNet18, we experiment on training with
different combinations of interventional data. The checkmark denote the data type is used in the training. We denote the
model trained with only ImageNet data as ‘A,’ the model trained with both ImageNet data and the interventional data Xint

as ‘B,’ the model trained with ImageNet original and Transferred interventional data Xitr as ‘C,’ and the model trained with
all data as type ‘D’. We show accuracy on the ObjectNet. With standard augmentation, simply training the original data with
our interventional data Xint improves performance on the ObjectNet and achieves the highest top 5 accuracy. By training
on with both Xint and transferred interventional data Xitr, the classifier achieved the best on top 1 accuracy. For training
with additional augmentation, training on our interventional data further increases performance, which demonstrates that
our approach is complementary to standard data augmentation methods. Together with additional augmentation, we show
combined training on both Xint and Xitr achieves the best performance on both top 1 and top 5 accuracy.

Type batch size forXint Std. Augmentation
top1 top5

ImageNet baseline [21] 0 20.48% 40.64%

GenInt (ours) 32 21.89% 41.47%
GenInt (ours) 64 22.07% 41.94%
GenInt (ours) 128 22.47% 41.55%
GenInt (ours) 256 21.92% 41.76%

Table 7: Ablation study for batch size in GenInt model.
We investigate the effect of batch size when using our gen-
erative interventional data with the original data. We use
λ1 = 0.05 and change the batch size from 32 to 256. We
observe that our method robustly outperforms the baseline
under different hyperparameter setup.

Type λ1 Std. Augmentation
top1 top5

ImageNet baseline [21] 0 20.48% 40.64%

GenInt (ours) 0.02 21.86% 41.41%
GenInt (ours) 0.05 22.07% 41.94%
GenInt (ours) 0.2 21.69% 41.59%

Table 8: Ablation study for the value of λ in GenInt model.
We investigate the effect of λ1 when using our generative
interventional data with the original data. We use batch size
64 and vary the value of λ from 0 to 0.2. We observe our
method robustly outperforms the baseline under different
hyperparameter setup while performing best on λ1 = 0.05.

batch size in Table 7, and ablation study for the weight λ1
in Table 8. Table 7 varies the batch size of Xint data from 0

to 256, fixing λ1 = 0.05. Our models perform the best be-
tween batch size 64 to 128. Table 7 varies the value for λ1
from 0 to 0.2, with fixed batch size 64. Model performs the
best at λ1 = 0.05. Table 7 and Table 8 demonstrate three
major results: (1) our approach constantly and robustly out-
performs the baseline under different setups, which sug-
gests that one can achieve the state-of-the-art performance
without much hyperparameter tuning (2) the performance of
our method will change as the hyperparameters change (3)
after grid search for hyperparameters, we demonstrate even
higher performance than the one we reported in our main
paper (which is a randomly chosen number without many
trials), which suggests our method can be improved given
more computational resources and hyperparameter tuning.

12. Visualization

12.A. Model Visualization: Which regions are used
by the model To make predictions

By learning the right cause, we expect the models to
learn to attend tightly to the spatial regions corresponding
to the right object, and not spuriously correlated contextual
regions. We use GradCAM to visualize all models’ dis-
criminative regions in Figure 16. The results demonstrate
that, our model not only outperforms the the-state-of-the-
art ResNet152 model trained on ImageNet, but also out-
performs other 4 established methods [13, 51, 19, 38] for
training robust classifiers with data augmentation. For ex-
ample, for the first ‘Sunglasses’ image, the baseline models
attend to the spurious floor background and viewpoint, then
mispredict the ‘Sunglasses’ as ‘Toilet Tissue’ and ‘Sandal’.
However, our method learns the right causal features, which
ignores the spurious background and viewpoint informa-
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tion, leading to the right prediction. The same mispre-
dictions happen for ‘Tie’ and ‘Envelope’ as well: given a
wooden background, the state-of-the-art classifiers tend to
predict based on the background and context, getting mis-
predictions such as ‘Cleaver’ and ‘Sandal’. This suggests
that, in addition to performance gains upon the established
5 baseline methods, our model predicts the right category
for the right reasons.

12.B. Equivariance in Generative Models

In Figure 17, we show more examples of steering the
transformation of images generated using BigGAN. The
major data augmentations are often restricted to a few types
of traditional transformations, such as rotation and color jit-
tering. Our intervention method can intervene on a larger
number of nuisances with high-level transformations, such
as stretch, which is orthogonal and complementary to exist-
ing augmentation strategies. Also, simply sampling from a
generator will result in transformations that are spuriously
correlated to the object category. With our generative inter-
vention, we enable the generator to create transformations
that relate less to the object category. Our interventional
strategy increases the value of P (x|z), which tightens the
causal bound according to our theory. Our generator sample
a larger number of examples from the tail region of the dis-
tribution, which intuitively prevents the model from overfit-
ting to certain biases.

12.C. Transferring generative interventions

Eliminating spurious correlations can promote causality,
producing robust classifiers. We propose to intervene on not
only the generative data, but also the natural data. As we
discussed in the main paper, projecting natural images to
the latent space in generative models is challenging, yield-
ing inferior results. Instead, we directly transfer the desir-
able generative interventions to natural data. Leveraging the
neural style transfer [30, 18], we denote our generative in-
terventional data as the ‘style’ images, and the natural data
as the ‘content’ images. We use the VGG model as the
backbone for style transfer, where we use the features at
1st, 2nd, 3rd, 4th, 5th convolutional layer as the style and
match the feature at 4th convolutional layer as content. We
weight the style loss with 1000000. We use the LBFGS
optimizer with default parameter setup in Pytorch. We ap-
ply update steps with number uniformly sampled from 20 to
70. The results for transferred interventions are visualized
in Figure 18. Our method can transfer the desirable inter-
ventions, such as the background and texture, to the target
image, eliminating spurious correlations in the original nat-
ural data.
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Figure 16: We visualize the input regions that are used to make predictions for 5 baseline models and our models. Blue
indicates the model ignores the region for discrimination, while red indicates the region is the key for discriminative. The
white text shows the model’s top prediction. The baseline frequently latches onto spurious background context, resulting
in wrong predictions. While the state-of-the-art data augmentation and robust learning methods cannot attend to the causal
region, our model often predicts the right thing for the right reasons.
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Figure 17: Generative adversarial networks are steerable, allowing us to manipulate images and approximate interventions.
Since the representations are equivariant, the transformations transfer across categories. Each row in the figure presents
images from the same intervention direction.
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Figure 18: How to conduct interventions for natural images without knowing the corresponding latent code in a generator?
We transfer the desirable intervention to our target images via the neural style transfer algorithm. The ‘Raw Image’ column
shows the images that we want to intervene on. The ‘Intervention to Transfer’ column shows the result of applying our
generative intervention to a random image generated by BigGAN, since intervention cannot exist itself, it needs to be realized
on one image. For example, the first example has an intervention to whiten the background, where we realize it on a bagel
image. Our goal is to apply this intervention to the natural image in the first column. The ‘Intervention Result’ column shows
the outcome of our transferred intervention, where our ‘Raw Image’ is intervened with the intervention in the ‘Intervention to
transfer’ column. For the first image, we can see the background for the hook is whitened. We can thus perform interventions
on the natural data where no latent code is found in the generative models. While the interventions here are mostly restricted
to the background and scene context changes without viewpoint rotation, it can remove spurious correlations from the raw
images to enforce a tighter causal bound.
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