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Abstract. Multi-agent trajectory forecasting has recently attracted a
lot of attention due to its widespread applications including autonomous
driving. Most previous methods use RNNs or Transformers to model
agent dynamics in the temporal dimension and social pooling or GNNs
to model interactions with other agents; these approaches usually fail to
learn the underlying continuous temporal dynamics and agent interac-
tions explicitly. To address these problems, we propose Social ODE which
explicitly models temporal agent dynamics and agent interactions. Our
approach leverages Neural ODEs to model continuous temporal dynam-
ics, and incorporates distance, interaction intensity, and aggressiveness
estimation into agent interaction modeling in latent space. We show in
extensive experiments that our Social ODE approach compares favor-
ably with state-of-the-art, and more importantly, can successfully avoid
sudden obstacles and effectively control the motion of the agent, while
previous methods often fail in such cases.

Keywords: Multi-Agent Modeling, Ordinary Differential Equations, So-
cial ODEs

1 Introduction

The goal of multi-agent trajectory forecasting is to estimate future agent trajec-
tories given historical trajectories of multiple agents. It has drawn much attention
because of its widespread applications such as autonomous driving, urban data
mining, path planning and traffic flow forecasting.

Multi-agent trajectory forecasting is a challenging problem because agent in-
teractions (relational dimension) and underlying agent temporal dynamics (tem-
poral dimension) jointly affect each agent in a nonlinear and complex way. By
modeling the relational and temporal dimensions, previous deep learning ap-
proaches have shown to be promising. They often use graphs, social pooling, or
spatial Transformers to model the relational dimension, while they apply RNNs
or temporal Transformers to encode the temporal dimension. However, these
methods usually fail to learn the underlying continuous temporal dynamics and
the agent interactions with other agents explicitly. For example, spatial Trans-
formers estimate the attention between any two agents, but the attention can not
explain how one agent affects the other and does not incorporate agent informa-
tion explicitly, such as distance with other agents. Moreover, RNNs recurrently
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update the hidden state discretely as shown in Fig. 1a, which is a limitation,
because the agent trajectory is continuous as shown in Fig. 1b. These modeling
limitations often lead to inaccurate and unsatisfactory results, such as reduced
forecasting accuracy and collisions among agents.

(a) Discrete State Transition (b) Continuous State Transition

Fig. 1. Differences between discrete state transitions and continuous state transitions

To overcome the above limitations by previous methodologies, we propose
Social ODE to explicitly model nonlinear agent interactions and agent temporal
dynamics. In our Social ODE framework, the next position of each agent is
determined based on the previous position and velocity. The agent’s position
and velocity are affected by other agents. For example, when we drive a vehicle
(agent), if another vehicle approaches dangerously close, we tend to decrease
or increase our vehicle’s velocity and potentially change direction. Additionally,
the distance between vehicles and the driver’s driving habits determine how the
vehicle’s velocity changes. To incorporate into our Social ODE these real-world
agent behaviors, we encode in latent space the real-world trajectories and we
model them based on an Ordinary Differential Equation as follows:

dh(t)

dt
= g(h(t), t), h(t) = h(0) +

∫ t

0

g(h, t)dt, (1)

where h(t) is the state of the agent’s latent trajectory at time t. Therefore, g(h, t)
models the current state and the nonlinear interactions with other agents.

The proposed Social ODE is an encoder-decoder architecture based on VAEs,
where the encoder projects an agent’s historical trajectories to latent space and
the decoder recovers the historical trajectories and forecasts future agent tra-
jectories using the latent space representation. To model and learn the agent’s
continuous latent trajectory from the historical trajectories, we use a Neural
ODE that learns the underlying temporal dynamics of the agent’s continuous
trajectory. The agent’s temporal dynamics are determined by the current state
and the agent’s interactions with other agents. To model the agent interactions
explicitly (relational dimension), we decouple them into three components: dis-
tance, interaction intensity, and aggressiveness information. All three are multi-
plied to model their impact on the temporal dynamics of each agent. Because
our Social ODE models the relational and temporal dimensions explicitly, an
agent can also avoid collisions with other agents. In addition, using repellers and
attractors, we can modify an agent’s ODE to model more effectively an agent’s
trajectory, behavior (e.g., courageous) and goals.

The main contributions of our paper are the following:
Model an agent’s trajectory relational and temporal dimensions

explicitly: Our proposed Social ODE framework models the temporal dimen-
sion using a Neural ODE to learn an agent’s trajectory continuous temporal
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dynamics in latent space, which are determined by the agent’s current state and
the interactions with other agents. We model agent interactions using the fol-
lowing three variables: distance with other agents, agent interaction intensity,
and agent aggressiveness.

Effective agent trajectory control without retraining: We demon-
strate how to modify the ODE to effectively control the trajectory of an agent
using attractors and repellers. This allows the modification of an agent’s trajec-
tory without retraining. Using our approach we can model dynamic environments
where new obstacles and attractors can appear dynamically.

Extensive experimental study: We conduct extensive experiments on
several datasets by comparing our Social ODE methodology with other state-
of-the-art approaches. We demonstrate that our Social ODE achieves improved
accuracy on complex trajectory forecasting. We demonstrate its effectiveness in
reducing agent collision rates in dynamic environments without retraining.

2 Related Work

Neural Ordinary Differential Equations. In [3], Neural ODE, a new class
of deep learning model is proposed, which is a continuous-time neural net-
work by solving ODEs. Following their work in modeling continuous-time se-
quences, Latent ODE [23] is proposed to model the irregularly-sampled time
series. ODE2VAE [29] models high-dimensional sequences by a latent second
order ODE. Dupont et al. propose Augmented neural ODE [5] to make the
model more expressive by preserving the topology of the input space. To model
non-continuous observations using Neural ODEs, Brouwer et al. propose GRU-
ODE-Bayes [4]. Moreover, [6, 28, 14, 20, 22, 13] analyze and adapt Neural ODEs
in other applications such as density estimation. [25, 19, 27] apply Neural ODEs
in trajectory modeling or planning. Grunbacher et al. analyze the verification
of Neural ODEs [9, 10]. Park et al. generate continuous-time video by Neural
ODE [21].

Inspired by these approaches, we propose Social ODE based on Latent ODE
to model the realistic trajectory and underlying temporal dynamics of the latent
trajectory. Similar to Latent ODE, our model also implements trajectory inter-
polation and extrapolation. The difference is that our model encodes the agent
interactions in the ordinary differential equation.

Multi-Agent Trajectory Forecasting. Social LSTM [1] is proposed by
Alahi et al., which applies social pooling in the hidden state of LSTM. Following
Social LSTM, Gupta et al. propose Social GAN [12], which uses global social
pooling and GAN to generate a trajectory consistent with the input. Graph-
VRNN [26] proposed by Sun et al. adopt graph network and RNN to model
the relational dimension. Kipf et al. represent underlying agent interaction in
latent space by graph [15]. Based on their work, Graber develop dynamic neural
relational inferece [8], instead of static relation in [15]. Trajectron++ [24] is a
graph-structured model with LSTM and accounts for environmental information.
EvolveGraph [18] forecasts the trajectory by dynamic relational reasoning by
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latent interaction graph. AgentFormer [30] proposes a novel Transformer to joint
model social and temporal dimensions. Gu et al propose DenseTNT [11] based
on VectorNet [7] to encode all agent to vectors and graph.

Different from previous methods, our proposed Social ODE learns the un-
derlying agent trajectory temporal dynamics in latent space using an ODE. The
advantage of our approach is that it explicitly models the continuous-time agent
trajectory which offers explainability. Besides, we model the relational dimen-
sion by incorporating agent distance, interaction intensity, and aggressiveness
explicitly in the ODE.

3 Methodology

In this section, we first define the problem of trajectory forecasting. Then we
present an overview of our proposed Social ODE and provide details of the
formulation of the associated encoder, decoder, and loss function. Finally, we
present agent trajectory control without retraining using Social ODEs.

3.1 Trajectory Forecasting

Multi-agent trajectory forecasting aims to estimate the future trajectories of
multiple agents XTh+1:Th+Tf

= {xi
Th+1,x

i
Th+2, ...,x

i
Th+Tf

, i = 1, ..., N} simulta-

neously giving their historical trajectories X0:Th
= {xi

0,x
i
1, ...,x

i
Th
, i = 1, ..., N},

where N denotes the number of agents. Th and Tf denote the historical and fu-
ture trajectory temporal lengths, respectively. Xt denotes the state of all agents
at time t and xi

t denotes the state of agent i at time t, including its position and
velocity.

3.2 Social ODE: Overview

Similar to Latent ODEs, which is a continuous-time, latent-variable method to
model time series, our Social ODE is also an Encoder-Decoder architecture. As
shown in Fig. 2, it concludes two components:

Encoder. It encodes the historical trajectory for each agentXi
0:Th

into latent
space. The encoder generates the initial state in latent space, which is set as the
initial value for the ordinary differential equation. Different from a Latent ODE,
we use a Spatio-Temporal Transformer as the encoder for improved learning.

Decoder. It generates latent trajectories and decodes the latent vector back
to the real-world state, i.e., the agent’s trajectory position and velocity. After
sampling the latent vector from the encoder, we design an ODE to model the
agent’s interactions in the decoder. The agent’s interactions are modeled by
incorporating distance, interaction intensity, and aggressiveness explicitly in the
ODE, while we model the temporal dimension based on the current latent state.
Using the initial state in latent space, we solve the ODE to generate latent
trajectories. At the end of our approach, the latent trajectory is converted to a
real-world trajectory.
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Fig. 2. Overview of the proposed Social ODE, which is composed of an encoder and a
decoder. The encoder transfers the historical trajectory to latent space. The decoder
first uses the ODE solver to generate a latent trajectory and then recover it back to a
realistic trajectory. The output includes historical trajectory (interpolation) and future
trajectory (extrapolation).

Using our approach, an agent’s trajectory i, is modeled as:

µhi , σhi = genc(x
i
0:Th

, xj
0:Th

), j ̸= i (2)

hi
0 ∼ N(µhi , σhi), (3)

hi
0,h

i
1, ...,h

i
Th+Tf

= ODESolve(hi
0, gθ, t0:Th+Tf

) (4)

each x̂i
t ∼ p(x̂i

t|h
i
t), (5)

where eq.(2) is the encoder and eqs.(3) to (5) model the decoder. ODESolver is
the numerical ODE solver given equation dh

dt = gθ with initial value hi
0.

3.3 Encoder: Spatio-Temporal Transformer

To encode the historical trajectory for each agent to latent vectors, we use a
Spatio-Temporal Transformer for each agent and the architecture is shown in
Fig. 3.

Spatial Transformer. It is used to encode the relational dimension. Because
the state of agent i at time t is only affected by states of other agents before time
t, to reduce computation, we only take into account the states of other agents
in time t− 1 and t, which is shown in Fig. 3.

Temporal Transformer. After encoding the relational dimension in each
time step, the new state sequence for each agent is generated. We use a Temporal
Transformer to encode the generated state sequence for each agent and pool them
to generate a latent vector.
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Fig. 3. The architecture of Spatio-Temporal Transformer. The figure shows that we
apply Spatio-Temporal Transformer for trajectory X1. When the red point is modeled,
we improve the efficiency of the algorithm by using points only within the sliding
window, which are states of other agents in the previous and current time steps.

3.4 Decoder

We use the decoder to recover the real-world trajectory from the initial value h0.
There are two steps in the decoder: solving an ODE and transferring the latent
state to the real-world state.

In the Latent ODE model [3], after estimating the posterior p(ht0 |x0:t), the
initial value ht0 is sampled. These initial values are used to solve the corre-
sponding ODE. However, the relational dimension is ignored in the standard
Latent ODE formulation. To model agent interactions and improve agent pre-
diction trajectory, we encode state sequences of each agent in the latent space
and represent agent interaction in latent space using three variables: distance,
interaction intensity and aggressiveness. We define the equation as:

dhi(t)

dt
= gθ(hi(t), hj(t)) (6)

=
∑
j ̸=i

1

||hi − hj ||
k(i, j)ai + fθ(hi(t)), (7)

where hi(t) denotes the latent vector of agent i in time t and gθ is the derivative
of the latent vector. Besides, ||hi − hj || denotes distance information between
agent i and agent j, while k(i, j) is the interaction intensity between two agents.
ai denotes the aggressiveness of agent i.

The agent interaction is modeled based on the following three components:
Interaction Intensity. It models how agent j affects the dynamics of agent

i, which is denoted by k(i, j). We concatenate the latent vectors of two agents

(hi
t and hj

t ) and the derivatives of two agents in the previous time step (
dhi

t

dt and
dhj

t

dt ), and apply a fully connected neural network to estimate k(i, j).
Distance. It is obvious that the distance between two agents has a great

influence on each other and the shorter distance between two agents means the
greater influence. We represent this relationship explicitly in latent space, which
is 1

||hi−hj || , where i denotes the agent that is modeled and j denotes other agents.
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In latent space, the L2 distant ||hi −hj || of two agent contains realistic distance
information. When agent j come to i, the dynamics of agent i are affected, so
dhi(t)

dt becomes larger.
Aggressiveness. In real-world situations, some agents tend to refuse to

avoid other agents and others do not. Therefore, besides the distant information,
the aggressiveness of an agent should also be incorporated. The aggressiveness
can also be learned from the historical trajectory of the agent. As shown in Fig. 3
we use other fully connected networks before generating a latent vector in the
encoder to estimate the aggressiveness vector.

In the equation, interaction intensity, distance and aggressiveness are element-
wise multiplied together as an agent interaction term. Besides agent interaction,
the previous state is also essential to learning temporal dynamics. Similar to
standard latent ODE, we use fully connected networks in the temporal model-
ing, which is denoted by fθ(hi(t)) in eq.(7). We add the agent interaction and
feature of the current state together as the derivative of latent vector h(t). By an
ODE Solver, ht1 , ht2 , .., htn are estimated. Then we use fully connected neural
networks to decode latent vectors to realistic states xt1 , xt2 , .., xtn for each agent.

3.5 Loss Function

Because our method is based on the VAE model, we use the negative evidence
lower bound (ELBO) in our loss function:

Lelbo = −Eqϕ(ht0
|X0:Th

)[log pθ(X0:Th
|ht0)] +KL(qϕ(ht0 |X0:Th

)||pθ(ht0)), (8)

where qϕ(ht0 |X) is the posterior distribution and pθ(X0:Th
|ht0) denotes the in-

terpolation period that recovers the historical trajectory.
Because ELBO only takes into account historical trajectories, the MSE loss

is used to supervise prediction accuracy, which is the extrapolation period:

Lmse =
∑
i

(ŷi − yi)
2. (9)

In training, the whole trajectory X0:Th+Tf
is input to the Social ODE. The

output trajectory of input X0:Th+Tf
and input X0:Th

should be the same because
they recover the same trajectory. Therefore, their latent vectors have the same
distribution. Then we use another KL divergence as a loss function:

Lkl = KL(qϕ(zt0 |X0:Th
)||qϕ(zt0 |X0:Th+Tf

))). (10)

Consequently, the overall loss function is

L = Lelbo + Lmse + Lkl (11)

3.6 Agent Controlling with Social ODE

Apart from forecasting future trajectories, our proposed Social ODE can also
control a given agent’s trajectory, by adding a term to the ODE based on repellers
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and attractors without the need for retraining. This control approach enables
us to model real-world situations where obstacles (other agents) and agent goals
can change in real-time and require the modification of the agent’s trajectory.

Attractor and Repeller. Because our proposed Social ODE explicitly mod-
els the relational dimension, it is not hard to control an agent by modifying the
relational dimension dynamically due to real-time changes in the other agents,
obstacles and goals. We do this by adding terms modeling these changes as at-
tractors and repellers. If we want to set one attractor (e.g., a location where the
agent wants to reach), the ODE eq.(7) can be modified as follows:

dhi(t)

dt
=

∑
j ̸=i

1

||hi − hj ||
k(i, j)ai + fθ(hi(t), t)− λ(hi(t)− hg), (12)

where hg denotes the latent vector of the attractor and λ is a positive coefficient.
We show below that this modeling of an attractor dynamically reduces the

distance between the agent and the goal (attractor). The distance information
in latent space between the agent and the attractor is modeled as (hi(t)− hg)

2.
We can prove that this distance keeps getting smaller over time by examining
its time derivative as follows:

d(hi(t)− hg)2

dt
= 2(hi(t)− hg)×

dhi(t)

dt
(13)

= 2(hi(t)− hg)[
∑
j ̸=i

1

||hi − hj ||
k(i, j)ai + fθ(hi(t), t)]− 2λ(hi(t)− hg)

2.

Since λ is positive then the term is negative: −2λ(hi(t)−hg)
2 < 0. Therefore, if

λ is large enough,
d(hi(t)−hg)

2

dt < 0, which means the distance between the agent
and the attractor decreases as time goes by.

Similarly, to add many attractors and repellers the ODE eq.(12) is further
modified as follows:

dhi(t)

dt
=
∑
j ̸=i

1

||hi − hj ||
k(i, j)ai + fθ(hi(t), t) +

∑
n

(−λn(hi(t)− hn
g )) (14)

+
∑
m

(λm(hi(t)− hm
g )),

where (hm)g denotes the latent vector of a repeller and λm is a positive coeffi-
cient.

Adjusting Agent Interactions. To adjust the strength of agent interac-
tions, we further modify the first two terms in eq.(14) by introducing two new
parameters β1 and β2 to adjust the dynamics of agent interactions as shown in
the following equation. For example, if β1 is small and β2 is large, the agent will
be more aggressive and take less into account the other close-by agents.

β1

∑
j ̸=i

1

||hi − hj ||
k(i, j)ai + β2fθ(hi(t)). (15)
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Agent Return to Desired Trajectory. We modeled obstacle avoidance
(different from agent interactions) as repellers. However, the influence of repellers
can make the agent deviate from the desired trajectory. In order to ensure the
agent returns to the desired trajectory after obstacle avoidance, we add one more
term to eq.(14) as follows:

−λminh̃(hi(t)− h̃), (16)

where h̃i(t) is the original trajectory prior to obstacle avoidance and the term
minh̃(hi(t)− h̃) is an attractor and ensures that the agent always returns to the
closest point of the original trajectory.

After adding bother terms to eq.(14) the final equation is:

dhi(t)

dt
=

∑
j ̸=i

1

||hi − hj ||
k(i, j)ai + fθ(hi(t), t) +

∑
n

(−λn(hi(t)− hn
g )) (17)

+
∑
m

(λm(hi(t)− hm
g ))− λminh̃(hi(t)− h̃),

4 Experiments

In this section, we present experimental results to evaluate the performance of
our novel Social ODE framework. In 4.1 and 4.2, we present the training and
test datasets and implementation details, respectively. Then we show comparison
results with the state-of-the-art methods in 4.3. We present the agent control
without the need for retraining in 4.4. Finally in 4.5, we conduct the ablation
study.

4.1 Datasets

Our model is evaluated on the inD [2], rounD [17], and highD [16] traffic datasets.
Those are datasets of naturalistic road user trajectories collected by a drone. For
each dataset, 80 percent of the data are used for training and validation, and
20 percent are used for testing. We sample every 8 seconds as one instance and
delete the case where some agents leave the area in the middle. In each trajectory,
we sample one point every 0.4 seconds, so there are 20 points for agents which
are present all the time. The trajectories in the first 4 seconds are used as input
and those in the next 4 seconds are ground truth.

4.2 Implementation and Training Details

We normalize all the coordinates to range from 0 to 1. In the encoder module,
the dimension of key, query and value is set to 128 and the number of heads is
set to 8. Because there is no sequence information in the Spacial Transformer,
positional encoding is only used in the Temporal Transformer. In the decoder
module, the dimension of the latent vector is also 128. To model interaction
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intensity, a 512 × 128 fully connected network is used. We also use a 128 × 128
fully connected network to replace the last layer of the encoder to generate the
aggressiveness vector. In the decoder process, there are two parts: interpolation
and extrapolation. While inputting a historical trajectory X0:Th

, our model will

generate X̂0:Th+Tf
. The process of generating X̂0:Th

is the interpolation, which is

recovering the input like a VAE model, and that of X̂Th+1:Tf
is the extrapolation,

which estimates the prediction.
In the training phase, the Adam optimizer is used and the learning rate is set

initially to 10−4, which is then decayed by a factor of 0.5 when the loss comes
to a plateau. We train the model on A100 GPUs using PyTorch.

4.3 Comparison Results

Evaluation Metric. We evaluated our model by ADE (Average Displacement
Error), which is defined as

ADE =
1

T

∑
||xi

t − x̂i
t||, (18)

where xi
t is the ground truth and x̂i

t is the prediction in extrapolation. ADE
is used to evaluate the mean square error between the ground truth and the
prediction.

Baseline. We compare our Social ODE with several state-of-the-art meth-
ods: (1) Social LSTM [1]: Social pooling of hidden states in LSTM is used to
model agent interactions. (2) Social GAN [12]: GAN is combined with LSTM
encoder-decoder to judge whether the generated trajectory is similar to the re-
alistic generated trajectory. (3) DenseTNT [11]: The graph is used to extract
the relationship among different agents and each node in the graph is an agent’s
trajectory. (4) AgentFormer [30]: It is a Socio-Temporal Transformer encoder-
decoder model to jointly extract the time dimension and social dimension. The
codes of all the above methods have been published, so we directly train and
evaluate these models on inD, rounD and highD traffic datasets.

As shown in Table 1, Social ODE achieves better performance than Social
LSTM, Social GAN, and DenseTNT. We classify the trajectory into the ‘curve’
and ‘straight’ classes. From Table 1, if forecasting is for a long period of time,
Social ODE always performs best in curved trajectories, which means Social
ODE can deal better with complicated trajectories.

New Agents and Obstacles Dynamically Appearing. Most previous
methods assume that the number of agents/obstacles does not change over time.
However, in reality, some agents/obstacles may enter or leave during the course
of a trajectory, which has a social influence on other agents. For example, in the
autonomous driving scenario, the appearance of a pedestrian(s) close to or in
front of the vehicle/agent can happen suddenly and the agent needs to change its
trajectory. We conduct a set of experiments to show how the agent’s trajectory
is modified when a sudden obstacle appears. To model the sudden obstacle, we
place a static and a moving obstacle in the predicted agent trajectory from the
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Method length
inD highD rounD

straight curve straight curve straight curve

Social LSTM

2s

0.2474 0.8537 0.2846 0.8347 0.2367 0.8986
Social GAN 0.2537 0.8236 0.2564 0.8977 0.2679 0.8876
DenseTNT 0.2367 0.8046 0.2465 0.8546 0.2268 0.8464
AgentFomer 0.2346 0.8124 0.2368 0.8263 0.2140 0.8259
Social ODE 0.2408 0.8147 0.2406 0.8135 0.2254 0.8357

Social LSTM

4s

0.7973 3.1463 0.9525 3.5364 0.7268 2.6473
Social GAN 0.7861 3.1583 0.8367 3.4637 0.7483 2.6940
DenseTNT 0.7794 3.1578 0.7431 3.1778 0.6543 2.4764
AgentFomer 0.7604 3.1483 0.6814 3.1527 0.5924 2.4748
Social ODE 0.7728 3.1417 0.6873 3.1509 0.6005 2.4738

Social LSTM

8s

2.7536 8.3456 2.4570 9.3365 2.5583 9.1346
Social GAN 2.6573 8.2478 2.3279 9.6437 2.9546 8.9446
DenseTNT 2.6644 8.1475 2.1345 9.3464 2.7854 8.4677
AgentFomer 2.3474 8.1457 2.1167 9.3258 2.5337 8.3464
Social ODE 2.6064 8.1208 2.1384 9.3203 2.6447 8.3384

Table 1. Evaluation on inD, rounD and highD traffic datasets. The bold means best
performance.

test dataset. Using our Social ODE approach we observe that the agent modifies
the original trajectory to avoid the obstacle collision. In this experiment we
test how one agent adapts its trajectory to sudden appearing obstacles, while
the trajectories of the other agents are not modified and are kept constant. In
our experiments we consider that a collision occurs when the distance between
the agent and the obstacle is less than 0.5 meters. Table 2 shows the collision
rate of all methods. Social ODE achieves the lowest collision rate while avoiding
the static or moving agent. Fig. 4 shows some examples of the agent avoiding
an obstacle using our approach. It demonstrates that our model can correctly
extract the social relationship among agents and make agents realize that they
should avoid other agents or obstacles although there are no similar cases in the
training dataset.

Method Social LSTM Social GAN DenseTNT AgentFormer Social ODE

Static obstacle 28.6% 29.6% 22.8% 28.4% 8.8%
Moving obstacle 32.4% 35.2% 32.6% 33.0% 12.8%

Table 2. Collision rate of different methods when introducing a sudden obstacle in the
trajectory. Numbers in bold show the best performance.

4.4 Agent Controlling with Social ODE

In section 3.6 we showed how our proposed Social ODE can control the agent’s
trajectory through eq.(17). We conduct experiments to show how the use of
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Fig. 4. Sudden obstacle visualization. In each image, the green trajectory is the ground
truth and the white one is the predicted result. The black point is the sudden obstacle.
The obstacle is placed in the ground truth trajectory. The white trajectory demon-
strates that the agent successfully avoids the obstacle.

the attractor (target) and the repeller (obstacles) affect the agent. All the ex-
periments in this section are conducted during testing, without the need for
retraining.

Target. In the test dataset, one point near the last trajectory point is set
as the target. We represent the target in latent space using the encoder and
use eq.(17) to model the agent. λ is set from 0 to 10 and the reaching rate is
computed within 8 seconds from the beginning of the trajectory. When λ = 0
then there is no target modeling within our Social ODE model. In this case
reaching the target is defined when the distance between the agent and the
target is less than 0.5 meters. All other methods except denseTNT cannot use
the target to control the agent. DenseTNT directly plans the path between the
start point and the target and therefore can’t be used for dynamic target or
obstacle introduction like our approach. We therefore present results of target
reaching using our method in Table 3, when λ changes. The results show that
the larger the value of λ results in stronger attraction by the target.

λ 0 2 4 6 8 10

Reaching rate 4.8% 8.6% 25.4% 43.6% 71.4% 87.8%

Table 3. Reaching rate with different values of λ, if we dynamically set the target
to be the last trajectory point, during agent movement. Bold numbers mean the best
performance.

Obstacle Avoidance and Return to the Agent Trajectory. In 4.3,
showed how in our approach an agent can avoid an obstacle. However, after the
target avoids a sudden obstacle, it should come back to the original trajectory
assuming the target is not changed. We do some experiments to verify whether
eq.(17) can control an agent to avoid a sudden obstacle and return to the original
trajectory. Similar to 4.4, we place a static obstacle in the predicted trajectory.
Fig. 5 shows that the agent can bypass the obstacle, similarly to how drivers
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react when encountering while driving a sudden obstacle. This is done without
retraining and there is no similar case in the training dataset.

Fig. 5. Avoid the obstacle and return to the agent Trajectory. In each image, the
green trajectory is the ground truth and the white is the predicted result. The black
point is the sudden obstacle. The agent avoids the obstacle and returns to the original
trajectory.

Obstacles and Targets. We also conducted experiments where we intro-
duced obstacles and targets dynamically during an agent’s trajectory and we
showed modifications to the agent trajectory and the successful reaching of the
target. Fig.6 demonstrates that the agent can avoid the obstacle and reach the
target.

Adjusting the Relational Dimension. In eq.(15), the β1 and β2 are pa-
rameters that can modify the effect of the relational dimension. Larger β1 means
the agent’s trajectory tends to be affected more by other agents and larger β2

means the agent’s trajectory tends to keep its previous moving pattern. The
results in Fig. 6b show the effect of those parameters on agent trajectories.

(a) Avoid obstacle and reach target (b) Adjust the relational dimension

Fig. 6. (a) Avoid the obstacle and reach the target. The white trajectory is the output
result of social ODE. The green one is the ground truth. The cyan point is the target
and the black point is the obstacle. (b) Adjusting the relational dimension. White
trajectory: β1 = 1. Pink trajectory: β1 = 2.

4.5 Ablation Study

In this section, we verify the design of the proposed Social ODE model. We do
this by replacing components with similar components as follows.
Latent ODE Encoder + Our Decoder.We replace the decoder of the Latent
ODE with our decoder, which enables the Latent ODE to model the relational
dimension.
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Social LSTM + Our Decoder. We use social LSTM to encode the relational
dimension and temporal dimension for each agent to the latent vector. Then our
decoder recovers the latent trajectory back to a realistic trajectory.
Our Encoder + Neural ODE. Our Spatio-temporal Transformer is used as
the encoder, which generates the latent vector. The neural ODE decodes the
latent vector to position and velocity.
Our Encoder + Social Pooling ODE. Our Spatio-temporal Transformer is
used as the encoder to generate a latent vector. Instead of modeling the relational
dimension by distance, interaction dynamics and aggressiveness, we use the social
pooling from the Social LSTM model for latent vector in each time step.

The results are shown in Table 4. From the table, we can see that all the
changes in our components result in a performance decrease, which means the
design of our Social ODE is effective.

Method
inD highD rounD

straight curve straight curve straight curve

Latent ODE + our decoder 0.7732 3.2147 0.7886 3.3394 0.6373 2.5367
Social LSTM + our decoder 0.7864 3.1584 0.7630 3.3256 0.6357 2.5774
Our encoder + Neural ODE 0.7925 3.1647 0.7974 3.2754 0.6438 2.6227

Our encoder + Social pooling ODE 0.7857 3.1594 0.7533 3.2740 0.6363 2.5830
Social ODE 0.7728 3.1417 0.6873 3.1509 0.6005 2.4738

Table 4. Ablation Study: Evaluation of changing some components on inD, rounD
and highD traffic datasets. The forecasting length is 4 seconds. Bold depicts the best
performance.

5 Conclusion

In this paper, we present a Social ODE, which models and learns agent interac-
tion and underlying temporal dynamics explicitly. To model the agent interac-
tion, our Social ODE decouples it into three components: distance, interaction
intensity and aggressiveness, all of which are multiplied to estimate the rela-
tional dimension. Meanwhile, the underlying temporal dynamics are learned by
a Neural ODE in latent space, which includes agent interaction and the current
state. We have validated the performance of Social ODE through extensive ex-
periments using traffic datasets. Compared with previous schemes, our Social
ODE is shown to achieve favorable performance in terms of forecasting accu-
racy. Social ODE can also allow the dynamic insertion of obstacles, targets and
agents during the course of an agent’s trajectory without retraining. As a result,
our model achieves a lower collision rate when sudden obstacles occur in the
trajectory and can control the agent motion by dynamically inserting attractors
or repellers.
Acknowledgements: Research partially funded by research grants to Metaxas
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