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Abstract
Many machine learning methods operate by inverting a neu-
ral network at inference time, which has become a popular
technique for solving inverse problems in computer vision,
robotics, and graphics. However, these methods often involve
gradient descent through a highly non-convex loss landscape,
causing the optimization process to be unstable and slow. We
introduce a method that learns a loss landscape where gra-
dient descent is efficient, bringing massive improvement and
acceleration to the inversion process. We demonstrate this
advantage on a number of methods for both generative and
discriminative tasks, including GAN inversion, adversarial
defense, and 3D human pose reconstruction.

1. Introduction
Many inference problems in machine learning are formu-

lated as inverting a forward model F (x) by optimizing an
objective over the input space x. This approach, which we
term optimization-based inference (OBI), has traditionally
been used to solve a range of inverse problems in vision,
graphics, robotics, recommendation systems, and security
[28, 38, 22, 10, 62, 17]. Recently, neural networks have
emerged as the paramterization of choice for forward mod-
els [43, 53, 1, 49, 76, 68, 13, 78], which can be pretrained
on large collections of data, and inverted at testing time in
order to solve inference queries.

Optimization-based inference (OBI) has many advantages
over feed-forward or encoder-based inference (EBI). With-
out encoder, OBI provides flexibility to adapt to new tasks,
allowing one to define new constraints into the objective dur-
ing inference. When observations are partially missing, OBI
can adapt without additional training. Moreover, OBI nat-
urally supports generating multiple and diverse hypotheses
when there is uncertainty. Finally, OBI has intrinsic advan-
tages for robustness, both adapting to new data distributions
as well as defending against adversarial examples.

However, the key bottleneck for OBI in practice is the
computational efficiency and the speed of inference. Feed-
forward models are fast because they only require a single
forward pass of a neural network, but OBI requires many
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Figure 1: Loss Landscapes Comparison. The loss landscape of
optimization-based inference (OBI) is often highly non-convex.
We propose to learn a smoother loss landscape through a mapping
network to accelerate the optimization. Plotted from real data.

(often hundreds) steps of optimization in order to obtain
strong results for one example. Forward models in OBI are
often trained with generative or discriminative tasks, but they
are not trained for the purpose of performing gradient descent
in the input space. Fig. 9 visualizes the loss landscape for
uncurated examples. The loss landscape is not guaranteed
to be an efficient path from the initialization to the solution,
causing the instability and inefficiency.

In this paper, we propose a framework to accelerate and
stabilize the inversion of forward neural networks. Instead of
optimizing over the original input space, we learn a new in-
put space such that gradient descent converges quickly. Our
approach uses an alternating algorithm to learn the mapping
between these spaces. The first step collects optimization
trajectories in the new space until convergence. The second
step updates the mapping parameters to reduce the distance
between the convergence point and each point along the tra-
jectory. By repeating these steps, our approach will learn
a mapping between the spaces that allows gradient descent
over the input to converge in significantly fewer steps.

Empirical experiments and visualizations on both gener-
ative and discriminative models show that our method can
largely improve the convergence speed for optimization. We
validate our approach on a diverse set of vision tasks, in-
cluding GAN inversion [1], adversarial defense [45], and 3D
human pose reconstruction [53]. Our experiments show that
our method converges an order of magnitude faster without
loss in absolute performance after convergence. As our ap-
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Figure 2: Method. The left and middle figure show the loss landscape for our latent space and the original latent space, respectively. While
walking to the optimal solution in a few steps is hard in X space, it can be done in our learned loss landscapes.

proach does not require retraining of the forward model, it is
compatible to all existing OBI methods with a differentiable
forward model and objective function.

The primary contribution of this paper is an efficient
optimization-based inference framework. In Sec. 2, we sur-
vey the related literature to provide an overview of forward
model inversion problem. In Sec. 3, we formally define
OBI (3.1); our method to learn an efficient loss landscape for
OBI (3.2); a training algorithm for better generalization and
robustness (3.3) . In Sec. 4, we experimentally study and
analyze the effectiveness of the mapping network for OBI.

2. Related Work
The different approaches for inference with a neural

network can be partitioned into either encoder-based infer-
ence, which is feedforward, or optimization-based inference,
which is iterative. We briefly review these two approaches
in the context of our work. In addition, we also review repre-
sentative work in meta-learning and discuss the similarities
and differences with our work.

2.1. Encoder-based Inference
Encoder-based inference trains a neural network F to

directly map from the output space to the input space. Auto-
encoder based approach [55] learns an encoder that map
the input data to the latent space. [59, 65, 70, 54] learn an
encoder from the image to the latent space in GAN. Encoder
based inference requires training the encoder on the antici-
pated distribution in advance, which is often less effective
and can fail on unexpected samples [21, 33]. In addition,
encoder-based method can only produce one reconstruction
for under-constrained inverse problems [75], even if multiple
outcomes can all be true given the partial input.

2.2. Optimization-based Inference
OBI methods perform inference by solving an opti-

mization problem with gradient-based methods such as
Stochastic Gradient Descent (SGD) [60] and Projected
Gradient Descent (PGD) [44]. In these cases, the objective
function specifies the inference task. Besides these methods
which use a point estimate for the latent variable, one can
estimate the posterior distribution of the latent variable
through Bayesian optimization, such as SGLD [71].

Gradient based optimization methods have been used
to infer the latent code of query samples in deep genera-
tive models like GANs [26] via GAN inversion [36, 31, 61,
81, 1, 2, 8, 29, 52]. Style transfer relies on gradient based
optimization to change the style of the input images [32].
It can also create adversarial attacks that fool the classi-
fier [18, 11, 48, 63]. Recently, back-propagation-based
optimization has shown to be effective in defending adver-
sarial examples [45, 47] and compressed sensing [9]. [74]
uses MAML [23] to accelerate the optimization process in
compressed sensing.

Recently, constrained optimization was popularized for
text-to-image synthesis by [19, 41]. They search in the latent
space to produce an image that has the highest similarity
with the given text as measured by a multi-modal similarity
model like CLIP [56]. Test-time constrained optimization
is also related to the idea of ‘prompt-tuning’ for large lan-
guage models and vision-language models. [39] learns “soft
prompts” to condition frozen language models to perform
specific downstream tasks. Soft prompts are learned through
backpropagation to incorporate signal from just a few la-
beled examples (few-shot learning). Visual prompting at
both training time [7, 46] and testing time [67] also relies on
effective latent variable optimization.

A major challenge for optimization-based inference is
how to perform efficient optimization in a highly non-convex
space. To address this, input convex model [4] was proposed
so that gradient descent can be performed in a convex
space. [66] introduced a method to retrain the generative
model such as it learns a latent manifold that is easy to
optimize. When the model cannot be changed and retrained,
bidirectional inference [68] and hybrid inference [81, 80]
uses an encoder to provide a good initialization for the
optimization-based inference in a non-convex space. Our
method does not retrain the generative model, but instead
maps a new latent space into the original input space,
allowing more efficient optimization.

2.3. Meta-Learning
Given a distribution of tasks, meta-learning aims to

adapt quickly when presented with a previously unseen
task. MAML [23] and related methods [25, 24] propose
a method to learn a parameter initialization of a neural net-



work by differentiating through the fine-tuning process. To
reduce the computational cost of MAML due to the 2nd
degree gradient, [51] proposes a first-order meta-learning
algorithm. Unlike MAML which include modifying the for-
ward model (e.g. in [74]), our approach is able to keep the
forward model fixed in order to maintain its learned rich pri-
ors. Instead of meta-learning of model initialization, a line of
work [5, 57, 14, 72] proposed to learn an optimizer, often in
the form of an RNN, in order to accelerate gradient descent.
Unlike learned optimizers that try to create better optimiza-
tion algorithms, our approach instead learns to remap the loss
landscape which is compatible with any choice of optimizer,
including standard SGD or learned ones.

3. Learning Landscapes for Efficient Inference
We present our framework to learn an efficient loss land-

scape for optimization-based inference (OBI) methods. In
Sec. 3.1, we will define OBI. In Sec. 3.2, we will introduce
our framework as well as the training objective. In Sec. 3.3,
we will describe how to train our model with an alternating
optimization algorithm and an experience-replay buffer.

3.1. Optimization-based Inference
Let F (x) = ŷ be a differentiable forward model that

generates an output ŷ given an input variable x 2 X . For
example, ŷ might be an image, and x might be the latent
variables for a generative model. Given an observation y,
the goal of OBI is to find the input x̂ 2 X such that an
objective function L(ŷ, y) is minimized. Formally, we write
this procedure as:

x̂ = argmin
x2X

L(F (x), y) (1)

When the objective function L and the model F are both
differentiable, we can perform the optimization over input
space X with gradient descent.

3.2. Remapping the Input Space
Instead of operating in the original input space X , we

will create a new space Z where gradient descent is efficient
and converges in a small number of iterations. We will use a
neural network ⇥ : Z ! X that maps from the new space
Z to the original space X . The parameters of the mapping
⇥ is the vector ✓. The learning problem we need solve is
to estimate ✓ so that there is a short gradient descent path
in Z from the initialization to the solution. Fig. 2 shows an
overview of this setup.

We formulate an objective by rolling out the gradient
updates on z, where we write zt  zt�1 +� @L

@zt�1
as the tth

update with a step size of �. For gradient descent in space Z
to be efficient, the goal of our introduced ⇥ is to move every
step zt as close as possible to the global minima:
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Figure 3: Landscape Learning. An optimization trajectory
{zt}5t=0 collected is used to train ⇥. zi that corresponds to a higher
Li will yield a higher gradient when training ⇥. Optimization over
multiple steps along the trajectory causes ⇥ to learn patterns of
trajectories and create a more efficient loss landscape.

✓̂ = argmin
✓

E(z,y)

"
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t=0

L(F (⇥(zt)), y)

#

where zt =

(
0, t = 0

zt�1 + � @L
@zt�1

, t > 0

(2)

We visualize this process with a toy example in Fig. 3. Gra-
dient updates on ⇥ w.r.t multiple steps zt along a trajectory
will cause the loss value on each step to be lowered. By learn-
ing the parameters of ⇥ across many examples, ⇥ can learn
the patterns of optimization trajectories in X . For example,
⇥ can learn to estimate the step size in X and dynamically
adjust it to each example. Moreover, ⇥ can learn to reduce
non-convexity of the landscape.

Once we obtain ⇥̂ with parameters ✓̂, we do inference on
a new example y through the standard optimization-based
inference procedure, except in Z space now. Given the
observation y, we find the corresponding x̂ through the opti-
mization:

x̂ = ⇥̂(ẑ) where ẑ = argmin
z2Z

L(F (⇥̂(z)), y) (3)

When the inverse problem is under-constrained, one can
infer multiple hypotheses for x̂ by repeating the above opti-
mization with a different random initialization for z0.

3.3. Training
We use alternating optimization (AO) in order to train ⇥

jointly with estimating z for each example in the training
set. Specifically, we first fix parameters of ⇥ and collect N
optimization trajectories of z, each with length T . Adopt-
ing the same terminology from the robotics community for
learning on continuous states [50], we term this an experi-
ence replay buffer. Subsequently, we randomly sample data
from this buffer and train ⇥ to optimize the loss function.
We alternate between these two steps for a fixed number of
iterations with gradient descent for both. Depending on the
application, the training time for ⇥ varied from one hour to



one day using a four GPU server. Please see the appendix
for more implementation details.

We also experimented with an online version of the train-
ing algorithm, where we update parameters of ⇥ immedi-
ately after one update to z. However, in our experiments, we
found this resulted in a slower convergence rate. We show
these comparisons in the ablation experiments.

Algorithm 1 Learning Mapping Network ⇥

1: Input: Ground truth y, step size �z and �✓, number of
buffers B, number of data samples in a buffer N , number
of optimization steps per sample T , loss function L, and
forward model F .

2: Output: Learned mapping network ⇥
3: Randomly initialize a mapping network ⇥ with parame-

ters ✓
4: for b = 1, ..., B do
5: Initialize Experience Replay Buffer [{zt,i}Tt=1]

N
i=1

6: for i = 1, ..., N do
7: z0  0
8: for t = 1, ..., T do
9: zt  zt�1 + �z

@
@zt�1

L(F (⇥(z)), y)
10: zt,i  zt
11: end for
12: end for
13: for j = 1, ..., T · N do
14: Randomly sample z from previously collected

buffer
15: ✓j  ✓j�1 + �✓

@
@✓j�1

L(F (⇥(z)), y)

16: end for
17: end for
18: Return ✓

4. Experiments
The goal of our experiments is to analyze how well

our proposed method can be applied to various existing
OBI methods to improve the optimization efficiency. We
demonstrate application of our method to three diverse OBI
methods in computer vision, including both generative mod-
els and discriminative models. For each OBI method, the
inference-time optimization objective of the baseline and
ours can be written as:

Baseline: x̂ = min
x2X

L(F (x), y) (4)

Ours: ẑ = min
z2Z

L(F (⇥(z)), y) (5)

Next, we provide the specific implementation of the loss
term L for each application, along with quantitative and
qualitative results. We also perform experiments to under-
stand the loss landscape in Sec. 4.5 and perform ablations
on different parts of our approach in Sec. 4.4.

4.1. GAN Inversion
We first validate our method on StyleGAN inversion [1].

We take a pretrained generator of StyleGAN [35] denoted
as F . Let y be an observed image whose input variable we
are recovering, we optimize the objective of Eq. 5 where
the loss can be written as,

L(ŷ, y) = Llpips(ŷ, y) + ||ŷ � y||22 (6)

where Llpips is a perceptual similarity loss introduced in
[79], ŷ = F (x̂) for baseline and ŷ = F (⇥(ẑ)) for ours. We
train ⇥ on the train split of CelebA-HQ [34] dataset and
evaluate on CelebA-HQ validation split for in-distribution
experiments and LSUN-Cat[77] for distribution shifting
(OOD) experiments. We compare the results from our
method against the state-of-the-art encoder-based GAN
inversion model [59].

Quantitative Results. From Fig. 4a, we see that in all
experiments, optimization in our space Z consistently out-
performs the baseline from the first optimization step to after
convergence. This gap in performance is even larger when
evaluated on OOD data. This suggests that the improvement
in performance is not caused by memorizing the training data.
Note that our image reconstruction performance after only 2
steps of optimization is able to outperform or be on-par with
the baseline at 20 steps of optimization, resulting in a 10-fold
improvement in efficiency. Even after convergence (after
2000 optimization steps), our reconstruction performance
improves over the baseline by 15% for in-distribution evalu-
ation and 10% for OOD evaluation. When compared with
encoder-based GAN inversion [59], our method achieves
better reconstruction after 11 steps of optimization for in-
distribution data and 3 steps for OOD data.

Qualitative Results. From Fig. 8, we can see that our
method already shows improvements on in-distribution data
- it can almost perfectly reconstruct details like fine hair
strands, the cap on the person’s head, the object in the per-
son’s mouth as well-as the text on it. Interestingly, our
method is able to discover and reconstruct latents for cats
while the encoder-based model fails miserably as shown in
Fig 8. The performance on OOD data truly highlights the
benefits of our method. We also visualize how the face gen-
erations evolve over the process of optimization in Fig. 5.
We can see that in just 4 steps, our method is already able to
reconstruct coarse features such as face orientation, skin tone
and hair color, while the baseline has hardly deviated from
the initialization in regard to any of these features. Further,
in Fig. 7 we visualize reconstructions from partial observa-
tions where only the center of the face (row 1) or everything
other than the mouth (row 2) is visible. We can see a variety
of feasible possibilities for the hidden regions (e.g., differ-
ent hairstyles, lip colors, expressions, etc) showcasing the
diversity of the new latent space.
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Figure 4: Optimization Performance. We visualize the trends of optimization performance compared with the baseline. In GAN Inversion
(Left), we evaluate all models on test splits of CelebA-HQ [34] and LSUN-cat [77] (OOD) with loss defined in Eq. 6. Since encoder-based in-
ference doesn’t involve optimization, we use a flat line to represent it. We perform 2000 steps of gradient descent for all models except encoder-
based models. In 3D Human Pose Reconstruction (Right), we evaluate all models on test splits of GRAB [64] and PROX [27] (OOD) with
loss defined in Eq. 7. We perform 200 steps of gradient descent for all models. For each step, we plot the average loss value of test splits.
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Figure 5: Optimization Process for GAN Inversion. Comparing optimization process of our method and the baseline in order to reconstruct
the ground truth image. Left shows the results from the baseline where optimization is done in the original input space X . Middle shows
the results from our method where optimization is done in our space Z. Right column contains the ground truth image to each example.
Each row corresponds to the same example.

4.2. 3D Human Pose Reconstruction
In addition to image generation, our framework also

works for 3D reconstruction. For this, we use VPoser [53]
– a variational autoencoder [37] that has learnt a pose prior
over body pose. VPoser was trained on SMPL-X body pose
parameters y 2 R63 obtained by applying MoSh [42] on
three publicly available human motion capture datasets:
CMU Mocap [16], training set of Human3.6M [30], and the
PosePrior dataset [3].

We take a pretrained VPoser decoder denoted as F . Our
trained mapping network ⇥ projects a vector from the new
input space z 2 Z to a vector in the original VPoser de-
coder’s input space x 2 X . Similar to GAN Inversion, we
optimize the objective of Eq. 5, where the loss function

between predicted and ground truth pose parameters is,

L(ŷ, y) = ||ŷ � y||22 (7)

where ŷ = F (x̂) for the baseline and ŷ = F (⇥(ẑ)) for
ours. For training ⇥, we use the GRAB dataset [64] which
contains poses of humans interacting with everyday objects.
We construct splits for novel video sequences – thus the
test split will contain a seen human subject but a potentially
unseen pose / demonstration by that subject. We evaluate
on this test split for in-distribution experiments and on the
PROX dataset [27] for OOD experiments, which contains
poses of humans interacting in 3D scenes (e.g., living room,
office, etc).

Quantitative Results. For SMPL-X human pose recon-
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Figure 6: Optimization Process for 3D Human Pose Reconstruction. Results shown are for out-of-distribution PROX dataset for sitting
(Top) and standing (Bottom) poses.

struction experiment, the results follow a similar trend as
GAN inversion, with massive improvement in both conver-
gence speed and final loss values after convergence (see
Fig. 4b). Our method outperforms the baseline by 19% for
in-distribution evaluation and 11% for OOD evaluation.

Qualitative Results. In Fig. 6 we visualize how the
human pose reconstructions evolve over the process of op-
timization. Here, we observe that the reconstructions from
steps 0 to 6 of the baseline are similar for both examples.
On the other hand, our method caters to fast convergence
for the varying examples, highlighting the general, yet effi-
cient properties of our search space. Further, in Fig. 7 we
visualize reconstructions from partial observations where
the only joints visible are that of the upper body (row 3)
or lower body (row 4). We obtain a wide range of feasible
possibilities for the hidden joints demonstrating the diversity
of the latent space.

4.3. Defending Adversarial Attacks
Our method is also applicable to discriminative models. A

state-of-the-art defense [45] for adversarial attack optimizes
the self-supervision task at inference time, such that the
model can dynamically restore the corrupted structure from
the input image for robust inference. Following the existing
algorithm implementation, we optimize the input image via
our method by minimizing the following discriminative loss
function:

L(F (r+ a), y) = L(F (⇥(z) + a), y)

= Ei,j


�y(s)

ij log
exp(cos(fi, fj))P
k exp(cos(fi, fk))

�
+ �||⇥(z)||22,

where a is the adversarial attacks that we aim to defend
against, r = ⇥(z) is our additive defense vector to optimize,
fi are the contrastive features produced by the neural network

F from the ith image instance, and y(s)
ij is the indicator for

the positive pairs and negative pairs.
After obtaining the mapping network ⇥ and the input

variable ẑ, the prediction is ŷ = F 0(a + ⇥(z)), where F 0

is the classification model. Note that the a self-supervision
loss is optimized as a proxy for increasing the robust classi-
fication accuracy. In addition, we add a L2 norm decay term
for the generated noise z to avoid generating reversal vector
that is too large.

Optimization Steps
None 1 step 3 steps 5 steps

Model BL Ours BL Ours BL Ours

RO 31.99 34.62 44.65 36.77 44.23 38.38 43.43
AWP 35.61 39.54 51.39 42.81 51.67 44.96 51.05
MART 35.66 39.77 51.77 42.50 51.77 45.42 50.96
SemiSL 29.78 34.53 52.11 37.27 51.23 40.93 49.83

Table 1: Experiment on improving adversarial robust accuracy.
Our goal is to defend 200 steps of L2 = 256/255 norm bounded
attack [44], where the attack’s step size is 64/255. Our baseline
(BL) is the SOTA test-time optimization-based defense [45], which
minimizes the loss of self-supervision task.

Quantitative Results. We evaluate our method on four
popular pretrained robust models [58, 69, 73, 12] on CIFAR-
10 dataset. The results in [45] require many steps to optimize
the objective to improve the adversarial robustness, which
slows down the inference by hundreds of times than the
original forward pass. Ideally, we desire test-time optimiza-
tion that can adapt to the attacked images in just one step,

Defense Steps 0 1 3 5

Reversal (Baseline) 29.53 31.36 34.07 36.81
OBI (Ours) 29.53 44.48 46.84 50.42

Table 2: Adaptive attack experiments with BPDA (SemiSL). When
the attacker adapts to the defense, we can still improve robustness.



Partial GT Reconstruction from Random Initializations
Figure 7: Diversity of Masked Reconstructions. We visualize reconstructions for partially observable inputs from random initializations.
The masked regions are not considered for loss computation, i.e., the gradient is set to be zero. By optimizing only on the partial observation,
we obtain diverse, feasible solutions for the hidden regions. 5 or 4 out of 20 most representative samples are presented.

Number
of Steps

Full
Model

Without
AO and
Buffer

Random
⇥

Baseline

In-distribution 20 3.082 3.583 4.417 4.456
OOD 20 4.932 5.127 5.135 5.292
In-distribution 200 1.964 3.034 2.723 2.569
OOD 200 3.498 4.756 3.823 4.617

Table 3: Ablation Study on mapping network. Number of Steps
indicates the number of optimization steps performed during infer-
ence.

causing the minimal delay at inference time. In Table 1, our
method outperforms the gradient descent method in [45] by
up to 18% robust accuracy using a single step, providing a
real-time robust inference method. In Table 2, even under
the adaptive attack BPDA [6], our method also improves
accuracy by up to 14%. Note that our method converges
after 1 step of optimization, demonstrating the effectiveness
of our approach.

4.4. Ablation Study
In this section, we present an ablation study by removing

the proposed alternating optimization (AO) scheme and the
experience replay buffer. We also compare against a ⇥
that is randomly initialized. From Table 3 in appendix, we
discovered that for in-distribution, AO and training of Theta
improves the optimziation performance by 14% and 30%

respectively. Such gap becomes 35% and 28% for evaluation
on 200 steps. For OOD data, the advantage is furthered
enlarged as shown in Table 3.

One surprising result we discovered experimentally is
that OBI under a randomly initialized mapping network ⇥
consistently outperforms the baseline. We believe this is
due to the fact that adding a Gaussian distribution to an
underlying latent distribution of StyleGAN is beneficial in
smoothing out loss landscape, making it easier to perform
OBI. Similar random projection can also be found in [74].

4.5. Loss Landscape

To understand the underlying cause of the significant im-
provement in optimization brought by our mapping network
✓, we visualize in Fig. 9 the loss landscape for performing
optimization in the original input space X , and our projected
space Z. To generate this visualization, we first perform 20
steps of optimization on the validation dataset to collect a
set of recovered latents. We then perform principle compo-
nent analysis (PCA) on these recovered latents to obtain two
principle directions. Finally, for individual examples, we
evaluate the loss for vertices on a meshgrid spanned by the
two principle directions where the center is the last step of
optimization.

From the visualization, we can see that the loss land-
scapes of the baseline are highly non-convex and contain
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Figure 8: Comparison Against Encoder-Based Inference. Left shows the results on the test split of CelebA-HQ; Right shows the results
on the LSUN-cat dataset.

Figure 9: Visualizing Loss Landscape (Uncurated). Visualizing the loss landscape of StyleGAN inversion spanned by two principle
directions. Top row shows 4 examples of the loss landscapes corresponding to our space Z. Bottom row shows the loss landscapes
corresponding to the original input space X for the same 4 examples. Note that the top row and the bottom row have different minimum loss
values on the landscape because the minimas are obtained by performing independent optimization runs in space Z and X respectively.
Given a fixed number of optimization step, optimization in Z reaches lower loss values than optimization in X .

points whose loss are significantly higher than its neigh-
boring regions, while our loss landscapes are significantly
smoother, with the “spikes” removed. Besides, our loss
landscapes also tend to be steeper than the baseline ones.
These two phenomena directly cause our method to perform
gradient descent faster and stabler.

5. Analysis
5.1. L-BFGS

After learning the mapping network ✓, in addition to the
main results presented in Fig. 4a, we also run the same ex-

periments but with L-BFGS as optimizer [40], which tends
to perform better empirically with a smoother loss landscape.
As shown in table 5, after 10 steps of optimization, L-BFGS
achieves much better results than Adam in our learned land-
scape, which is already significantly better than the baseline.
Notably, applying L-BFGS in the original landscape does not
achieve significant speedup, and for Celeb-HQ, around 18%
of the examples failed to converge due to instability. These
results further verify that our method successfully learns a
smoother landscape for efficient optimization.



level of Corruption N (0, 0.02) N (0, 0.12) N (0, 0.22) N (0, 0.32) N (0, 0.42)

Improvement 29.53% 18.95% 12.57% 6.30% 6.72%

Table 4: Evaluation of a mapping network trained with Celeba-HQ trainset and tested on the Celeba-HQ testset corrupted with different
levels of Gaussian noise. The improvement is calculated by the percentage improvement of loss defined by Eq. 6 from baseline (no mapping
network) to ours (with mapping network) after 200 steps of optimization.

dataset CelebA-HQ AFHQ-Cat LSUN-Cat Container-Ship N (0.5, 0.52)

Improvement 29.53% 35.99% 24.36% 16.87% 6.60%
Table 6: Evaluation of a mapping network trained with Celeba-HQ trainset and tested on a spectrum of datasets from the original CelebA-HQ
(in-distribution) to Gaussian noise (OOD). AFHQ-Cat [15] is a dataset with aligned cat faces. LSUN-Cat [77] is a dataset with unaligned
cat images. Container-Ship is 200 images sampled from "Container Ship" class of ImageNet [20]. The improvement is calculated by the
percentage improvement of loss defined by Eq. 6 from baseline (without ✓) to ours (with ✓) after 200 steps of optimization.

ours ours baseline baseline
L-BFGS Adam L-BFGS Adam

Human 2.239 3.504 N/A 4.875
Cat (OOD) 4.066 5.087 5.227 5.475

Table 5: L-BFGS vs. Adam in Leanred Landscape (Ours)

5.2. More Evaluation on OOD Generalization
Since our proposed mapping network ⇥ is parameter-

ized by a neural network, there’s no guarantee that the
learned mapping function is surjective. Therefore, we em-
pirically study the generalization performance by testing
a mapping network trained on CelebA-HQ against a spec-
trum of datasets from very similar ones (in-distribution) to
completely different ones (OOD).

Synthetic Spectrum We first created a synthetic version
of this spectrum of datasets by varying the level of Gaussian
noise injected into the images of CelebA-HQ. With a higher
level of Gaussian noise injected into the original images,
more of the original image content is corrupted, creating a
distribution of images further away from the original images.

Natural Image Spectrum We also created a natural
image version of this spectrum of datasets containing:
CelebA-HQ (original in-distribution testset), AFHQ-Cat
(center-aligned cat faces), LSUN-Cat (unaligned cat im-
ages), Container-Ship ("Container Ship" class from Ima-
geNet), and Gaussian noise with individual pixel sampled
from N (0.5, 0.52). From left to right, images vary from very
similar to human faces to very different.

From results evaluated on both synthetic spectrum and
real spectrum, we observed consistent improvements of our
method over the baseline, which shows the generalization
performance of our method when applied to OOD data.
From table 6, we see the improvements drop as the eval-
uation data is less and less in-distribution with the training
data, which indicates that the mapping network does learn a
prior from the training data.

Baseline Ours Improvement

CelebA-HQ 2.569 2.396 6.72%
LSUN-Cat 4.617 3.717 19.49%

Table 7: Evaluation of a mapping network trained with images
of Gaussian noise sampled from N (0.5, 0.52) clipped to [0, 1].
Numbers show the average loss defined in Eq. 6 evaluated on
testset of CelebA-HQ and LSUN-Cat.

5.3. Dependence on Training Dataset
From previous section, we know that the learned mapping

network contains priors learned from the training data. To
exclude such influence, we train our mapping network using
randomly generated images made of Gaussian noise and eval-
uate on testset of CelebA-HQ. From table 7, we see that even
trained with the task of reconstructing images of Gaussian
noise, our mapping network still bring some improvement
over the baseline model, though less significant.

6. Conclusion
This paper presents a method to accelerate optimization-

based inference to invert a forward model. We propose an
approach that learns a new space that is easier than the origi-
nal input space to optimize with gradient descent at testing
time. Our experiments and analysis on three different ap-
plications in computer vision have shown that by learning
this mapping function, optimization becomes more efficient
and generalizes better to out-of-distribution data. Through
quantitative and qualitative analysis, we found that such im-
provement in optimization performance comes from a more
efficient loss landscape. Since optimization-based inference
has many advantages over encoder-based inference, we be-
lieve methods to accelerate them will have many impacts in
a variety of applications.
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