
Published as a conference paper at ICLR 2024

DETECTING TEXT FROM LLMS VIA REWRITING

Chengzhi Mao1, Carl Vondrick1, Hao Wang2, Junfeng Yang1

1Columbia University, 2Rutgers University
{mcz, junfeng, vondrick}@cs.columbia.edu, hw488@cs.rutgers.com

ABSTRACT

We find that large language models (LLMs) are more likely to modify human-
written text than AI-generated text when tasked with rewriting. This tendency
arises because LLMs often perceive AI-generated text as high-quality, leading to
fewer modifications. We introduce a method to detect AI-generated content by
prompting LLMs to rewrite text and calculating the editing distance of the output.
Our approach significantly improves the F1 detection scores of existing AI con-
tent detection models – both academic and commercial – across various domains,
including News, creative writing, student essays, code, Yelp reviews, and arXiv
papers, with gains of up to 29 points. Operating solely on word symbols without
high-dimensional features, our method is compatible with black box LLMs, and
is inherently robust on new content. Our results illustrate the unique imprint of
machine-generated text through the lens of the machines themselves.

1 INTRODUCTION

Large language models (LLMs) demonstrate exceptional capabilities in text generation (Cha, 2023;
Brown et al., 2020; Chowdhery et al., 2022), such as question answering and executable code gener-
ation. The increasing deployment and accessibility of those LLM also pose serious risks (Bergman
et al., 2022; Mirsky et al., 2022). For example, LLMs create cybersecurity threats, such as facilitat-
ing phishing attacks (Kang et al., 2023), generating propaganda (Pan et al., 2023), disseminating fake
or biased content on social media, and lowering the bar for social engineering (Asfour & Murillo,
2023). In education, they can lead to academic dishonesty (Cotton et al., 2023). Pearce et al. (2022);
Siddiq et al. (2022) have revealed that LLM-generated code can introduce security vulnerabilities to
program. Radford et al. (2023); Shumailov et al. (2023) also find LLM-generated content is inferior
to human content and can contaminate foundation models’ training. Detecting and auditing those
machine-generated text will thus be crucial to mitigate the potential downside of LLMs.

A plethora of works have investigated detecting machine-generated content (Sadasivan et al., 2023).
Early methods, including Bakhtin et al. (2019); Fagni et al. (2021); Gehrmann et al. (2019); Ip-
polito et al. (2019); Jawahar et al. (2020), were effective before the emergence of sophisticated GPT
models, yet the recent LLMs have made traditional heuristic-based detection methods increasingly
inadequate Verma et al. (2023); Gehrmann et al. (2019). Current techniques (Mitchell et al., 2023;
Verma et al., 2023) rely on LLM’s numerical output metrics. Gehrmann et al. (2019); Ippolito et al.
(2019); Solaiman et al. (2019) use token log probability. However, those features are not available in
black box models, including state-of-the-art ones (e.g., GPT-3.5 and GPT-4). Furthermore, the high-
dimensional features employed by existing methods often include redundant and spurious attributes,
leading the model to overfit to incorrect features.

In this paper, we present a simple and effective method for detecting machine-generated text by
prompting LLMs to rewrite it. Similar to how humans prompt LLMs for coherent and high-quality
text generation, our method uses rewriting prompts to gain additional contextual information about
the input for more accurate detection.

Our key hypothesis is that text from auto-regressive generative models retains a consistent struc-
ture, which another such model will likely to also have a low loss and treat it as high quality. We
observe that machine-generated text is less frequently altered upon rewriting compared to human-
written text, regardless of the models used; see Figure 1 as an example. Our approach shows how
to capitalize on this insight to create detectors for machine-generated text. Our method operates

1

Published as a conference paper at ICLR 2024

Concise this for me and keep all the information:

G
PT
-3
.5
-T
ur
boHuman

GPT

Ok yeah, the service can be a little high
falutin', and the wait is painful but this is

THE BEST BURGER EVER. That's all you
need to know. The BEST.

Despite the slightly pretentious service and
long wait, this restaurant undeniably

serves the best burger you will ever taste.

Despite the pretentious service and long
wait, this place serves the absolute best

burger. That's all you need to know.

Despite pretentious service and long wait,
this place serves the best burger you'll

ever taste.

Input: Yelp Review Rewriting Output

Detecting Machine-Generated Text by Editing Distance

Figure 1: We introduce “Detecting via Rewriting,” an approach that detects machine-generated text
by calculating rewriting modifications. We show the character deletion in red and the character inser-
tion in orange. Human-generated text tends to trigger more modifications than machine-generated
text when asked to be rewritten. Our method is simple and effective, requiring the least access to
LLM while being robust to novel text input.

on the symbolic word output from LLMs, eliminating the need for deep neural network features,
which boosts its robustness, generalizability, and adaptability. By focusing on the character editing
distance between the original and rewritten text, our approach is semantically agnostic, reducing ir-
relevant and spurious correlations. This feature-agnostic design also allows for seamless integration
with the latest LLM models that only provide word output via API. Importantly, our detector does
not require the original generating model, allowing model A to detect the output of model B.

Visualizations, empirical experiments show that our simple rewriting-based algorithm significantly
improves detection for several established paragraph-level detection benchmarks. Our method ad-
vances the state-of-the-art detection methods (Verma et al., 2023; Mitchell et al., 2023) by up to 29
points. Our method generalizes to six different datasets and domains, and it is robust when detecting
text generated from different language models, such as Ada, Text-Davinci-002, Claude, and GPT-
3.5, even though the model has never been trained on text generated from those models. In addition,
our detection remains robust even when the text generation is aware of our detection mechanism and
uses tailored prompts to bypass our detection. We will release our models, data, and code.

2 RELATED WORK

Machine Text Generation. Machine generated text has achieved high quality as model im-
proves (Radford et al., 2019; Li et al., 2022; Zhou et al., 2023; Zhang et al., 2022; Gehrmann et al.,
2019; Brown et al., 2020; Chowdhery et al., 2022). The release of ChatGPT enables instructional
following text synthesis for the public Cha (2023). (Dou et al., 2021; Jawahar et al., 2020) demon-
strate that machines can potentially leave distinctive signals in the generated text, but these signals
can be difficult to detect and may require specialized techniques.

Detecting Machine Generated Text. Detecting AI-generated text has been studied before the emer-
gence of LLM (Bakhtin et al., 2019; Fagni et al., 2021; Gehrmann et al., 2019; Ippolito et al., 2019).
Jawahar et al. (2020) provided a detailed survey for machine-generated text detection.

The high quality of recent LLM generation makes detection to be challenging (Verma et al., 2023).
Chakraborty et al. (2023) studies when it is possible to detect LLM-generated content. Tang et al.
(2023) surveys literature for detecting LLM generated texts. Sadasivan et al. (2023) show that the
detection AUROC is upper bounded by the gap between the machine text and human text. The
state-of-the-art LLM detection algorithm (Verma et al., 2023; Mitchell et al., 2023) requires access
to the probability and loss output from the LLM, yet those numerical metrics and features are not
available for the latent GPT-3.5 and GPT-4. Mitchell et al. (2023) used negative curvature of the loss
to detect AI-generated passages, which requires hundreds of queries to calculate the curvature. In
contrast, our rewriting works with a single query, which is cost-efficient. Verma et al. (2023) detect
machine-generated text through binary classification, which relies on the probabilistic output from
each individual token. However, the probabilistic output from deep models can contain nuisances
and spurious features, and can also be manipulated by adversarial attacks (Jin et al., 2019; Zou et al.,
2023), making detection not robust. Another line of work aims to watermark the AI-generated text
to enable detection (Kirchenbauer et al., 2023).

Bypassing Machine Text Detection. Krishna et al. (2023) showed rephrase can remove watermark.
Krishna et al. (2023); Sadasivan et al. (2023) show that paraharase can efficiently evade detection,

2

Published as a conference paper at ICLR 2024

20 40 60 80 100
Similarity

0

20

40

60

80

100

Co
un

t

Histogram of Rewriting Consistency
human
GPT

(a) Invariance

20 30 40 50 60 70 80 90 100
Similarity

0

20

40

60

80

100

Co
un

t

Histogram of Rewriting Consistency
human
GPT

(b) Equivariance

15 20 25 30 35 40 45 50
Variance Value

0

20

40

60

80

100

Co
un
t

Histogram of Rewriting Uncertainty
human
GPT

(c) Uncertainty

Figure 2: The rewriting similarity score of human and GPT-generated text. The similarity score
measures how similar the text is before and after the rewriting. A larger similarity score indicates
that rewriting makes less change. (a) We show the similarity score under a single transformation;
machine-generated text (red) is invariant after rewriting compared with human-generated text. (b)
We show the similarity score under a transformation and its reverse transformation; the machine-
generated text is more equivariant under transformation. (c) We show the uncertainty of text pro-
duced by humans and GPT. GPT input is more stable than human input. The samples are run on the
Yelp Review dataset with 4000 samples. The discrepancies in invariance, equivariance, and output
uncertainty allow us to detect machine-generated text.

including DetectGPT (Mitchell et al., 2023), GLTR (Gehrmann et al., 2019), OpenAI’s generated
text detectors, and other zero-shot methods Ippolito et al. (2019); Solaiman et al. (2019). There is a
line of work that watermarks the generated text to enable future detection. However, they are shown
to be easily broken by rephrasing, too. Our detection can be robust to rephrasing.

Prompt Engineering. Prompting is the most effective and popular strategy to adapt and instruct
LLM to perform tasks Li & Liang (2021); Zhou et al. (2022); Wei et al. (2022); Kojima et al. (2022).
Zero-shot GPT prompts the GPT model by asking “is the input generated by GPT” to predict if this is
GPT generated (Verma et al., 2023). However, since GPTs are not trained to perform this task, they
struggle. In contrast, our work constructs a few rewriting prompts to access the inherent invariance
and equivariance of the input. While we can also perform an optimization-based search for better
prompt (Zhou et al., 2022), we leave this for future work.

3 DETECTING MACHINE GENERATED TEXT BY REWRITING

We present our approach for detecting machine-generated text via rewriting. We first talk about the
rewriting prompt design to access the property of the input text, then introduce our approach that
detects based on the output symbolic modifications.

3.1 REWRITING TEXT VIA LANGUAGE MODELS AND PROMPTS

Let F (·) be a large language model. Given an input text x, our goal is to classify the label y, which
indicates whether it is generated by a machine. The key observation of our method is that given the
same rewriting prompt, such as asking the LLM model to “rewrite the input text,” an LLM-written
text will be accepted by the language model as a high-quality input with inherently lower loss, which
leads to few modifications at rewriting. In contrast, a human-written text will be unfavoured by LLM
and edited more by the language models.

We will use the invariance between the output and the input to measure how much LLM prefers the
given input. We hypothesize that LLM will produce invariant output when rewriting its own gen-
erated text because another auto-regressive prediction will tend to produce text in a similar pattern.
We define this property as the invariance property.

Invaraince. Given data x, we apply a transformation to the data via prompting the LLM with prompt
p. If the data x is produced from LLM, then the transformation p that aims to rewrite the input should
introduce a small change. We construct the invariance measurement as L = D(F (p,x),x), where
D(·) denotes the modification distance.

We manually create the prompt p to access this invariance. We do not study automatic ways to
generate prompts Zhou et al. (2022); Li & Liang (2021), which can be done in future work by

3

Published as a conference paper at ICLR 2024

News

Creative

Writing

Student

Essay

Code

Yelp

Review

Arxiv

Generative modeling has been used frequently in synthetic data generation.\nFairness and
privacy are two big concerns for synthetic data. Although Recent\nGAN [\
\cite{goodfellow2014generative}] based methods show good results in\npreserving privacy,
the generated data may be more biased. At the same time,\nthese methods require high
computation resources. In this work, we design a\nfast, fair, flexible and private data
generation method. We show the\neffectiveness of our method theoretically and empirically.
We show that models\ntrained on data generated by the proposed method can perform well
(in inference\nstage) on real application scenarios.

Generative modeling has frequently been employed for synthetic data generation, raising
significant concerns regarding fairness and privacy. While recent GAN [\
\cite{goodfellow2014generative}] based techniques demonstrate promising privacy
preservation, the resulting data may be subject to increased bias. Moreover, these methods
demand substantial computational resources. To address these limitations, we present a
novel approach to data generation that prioritizes speed, fairness, flexibility, and privacy.
Through theoretical and empirical analyses, we showcase the effectiveness of our method.
Importantly, we demonstrate that models trained on data generated by our proposed
approach excel in real-world application scenarios during the inference stage.

This paper introduces FFPDG, a novel approach to synthetic data generation that combines
generative modeling with a focus on fairness and privacy. Despite the common utilization of
generative modeling for synthetic data generation, the concepts of fairness and privacy have
often been overlooked. FFPDG aims to bridge this gap by providing a fast and efficient
method for generating data that adheres to both fairness and privacy principles. The
proposed approach holds promise in enabling researchers and data scientists to generate
diverse synthetic datasets that are representative, unbiased, and maintain individual privacy,
thus advancing the field towards more ethical and inclusive data generation practices.

This paper introduces FFPDG, a novel approach to synthetic data generation that combines
generative modeling with a dedicated focus on fairness and privacy. Despite the widespread
use of generative modeling for synthetic data generation, little attention has been given to
the crucial concepts of fairness and privacy. FFPDG aims to address this issue by offering a
fast and efficient method for generating data that upholds both fairness and privacy
principles. The proposed approach shows great promise in empowering researchers and
data scientists to create diverse synthetic datasets that are not only representative and
unbiased but also prioritize individual privacy. This advancement aims to propel the field
towards more ethical and inclusive practices in data generation.

The two started yelling back and forth. At me. At each other. I zoned out, closed my eyes. I
blocked them out and drew my gun.

The two engaged in a heated exchange, their voices reverberating in my ears. They directed
their anger towards me, throwing accusatory words in my direction. Simultaneously, they
turned their anger on each other, unleashing a barrage of insults. Overwhelmed by the
commotion, I instinctively tuned out their voices, shutting my eyes and concentrating on
blocking out the chaotic scene unfolding before me. In an effort to regain control of the
situation, I reached for my gun.

I thought you superheroes wore costly designer suits? DeFrayne insisted. I thought you superheroes were all about those expensive designer suits?" DeFrayne
insisted, intrigued

Therefore, we seriously doubt that the regulations will work, meet consumer demands or be
accepted by the private sector unless the administration radically changes its approach
immediately,\" the alliance added.

Thus, unless the administration swiftly alters its approach, the alliance strongly questions
the efficacy, consumer satisfaction, and industry acceptance of the regulations.

It preserves the historical differentiation between the exchange markets and the over-the-
counter markets,\" said Paul Raisler, a partner at Fried, Frank, Harris, Shriver & Jacobson,
which represented the Banks of New York.

Preserving the historical differentiation between the exchange markets and the over-the-
counter markets,\" emphasized Paul Raisler, a partner at Fried, Frank, Harris, Shriver &
Jacobson, who represented the Banks of New York.

Input RewriteHuman GPT

Organic farming is an agricultural practice that promotes the use of natural methods of
farming and abstains from the use of synthetic chemical fertilizers, pesticides, and
genetically modified organisms (GMOs). This practice has gained popularity in recent times
due to its focus on environmental conservation and promotion of soil health. However,
growing crops organically can present certain challenges to farmers, particularly in
maintaining economic yields while using organically certified methods to maintain soil
fertility. In this essay, I will discuss some of the challenges faced by organic growers in
maintaining economic yields while using organic methods, and how conventional producers
can change their practices to embrace the true principles of organic crop production.
Additionally, I will explore the strategies used by organic growers to maintain essential
nutrient levels in their crops and the advantages and disadvantages of using different
sources of essential elements in organic farming.

Organic farming is an agricultural practice that promotes the use of natural methods of
farming and abstains from the use of synthetic chemical fertilizers, pesticides, and
genetically modified organisms (GMOs). This practice has gained significant popularity in
recent times due to its focus on environmental conservation and promotion of soil health.
However, growing crops organically can present certain challenges to farmers, particularly in
maintaining economic yields while adhering to organic certification standards to preserve soil
fertility. In this essay, I will discuss the challenges encountered by organic growers in
maintaining economic yields while using organic methods. Moreover, I will explore how
conventional producers can modify their practices to embrace the true principles of organic
crop production. Additionally, I will examine the strategies employed by organic growers to
sustain essential nutrient levels in their crops and evaluate the advantages and
disadvantages of using different sources of essential elements in organic farming.

Last but not the least, since the issues centralised in this paper requests further
experimental studies to develop a clearer and novel framework of the effects of pictorial
representation on travel and tourism websites from a gender perspective, with a hope to
contribute guidance on adequate methodologies, a brief review of research approaches
those have been done to Website effectiveness evaluation is presented as following: by
2006, there were 56 papers published that dealt with tourism marketing on the Internet and
presented 47 different research approaches, such as modified Balance Scored Card, Rating
systems, Web analysis model, and so on, which were used to evaluate the content of
hospitality and tourism destination website, based on Han & Mills's findings (Referred to
Appendix 1)

Lastly, it is important to highlight that this paper identifies the need for further experimental
studies to enhance our understanding of the impact of visual representation on travel and
tourism websites, specifically from a gender perspective. The aim is to develop a more
comprehensive and innovative framework that can guide researchers in choosing
appropriate methodologies. In this regard, a concise review of previous research
approaches used to evaluate website effectiveness in the hospitality and tourism industry is
provided.\n\nAccording to Han & Mills (as referenced in Appendix 1), a total of 56 papers
were published by 2006, focusing on tourism marketing on the Internet. These papers
discussed 47 distinct research approaches, including modified Balanced Scorecard, rating
systems, web analysis models, and more. These methodologies were employed to assess
the content of hospitality and tourism destination websites.

def f(n):
 ret = []
 for i in range(1, n+1):
 if i % 2 == 0:
 # Calculate factorial
 factorial = 1
 for j in range(1, i+1):
 factorial *= j
 ret.append(factorial)
 else:
 # Calculate sum
 sum_of_numbers = 0
 for j in range(1, i+1):
 sum_of_numbers += j

ret.append(sum_of_numbers)
 return ret

def f(n):
 ret = []
 for i in range(1, n+1):
 if i % 2 == 0:
 factorial = 1
 for j in range(1, i+1):
 factorial *= j
 ret.append(factorial)
 else:
 sum_of_numbers = sum(range(1,
i+1))
 ret.append(sum_of_numbers)
 return ret

def f(n):

 ret = []

 for i in range(1,n+1):

 if i%2 == 0:

 x = 1

 for j in range(1,i+1): x *= j

 ret += [x]

 else:

 x = 0

 for j in range(1,i+1): x += j

 ret += [x]

 return ret

def f(n):

 ret = [1 if i%2 == 0 else
sum(range(1,i+1)) for i in
range(1,n+1)]

 return ret

Really nice place to get a pedicure! People are very friendly and it is a relaxing environment.
Definitely recommend if you are looking for a clean place to get your toes done!

Highly recommend this clean and relaxing place for a friendly and enjoyable pedicure
experience.

Highly recommend this place for a clean and relaxing pedicure experience. Friendly staff and
great ambiance.

Highly recommend this place for a clean and relaxing pedicure experience with a friendly
staff and great ambiance

Figure 3: Examples of text rewriting on six datasets for invariance. We use a green background to
indicate human-written text, and a red background to indicate machine-generated text. We show
the character deletion in red and the character insertion in orange. Human-written text tends to be
modified more than machine-generated text. Our detection algorithm relies on this difference to
make predictions.

optimizing the prompt. In this work, we will show that even a single manually written prompt can
achieve a significant difference in invariance behavior. We show a few of our prompts here:

1. Help me polish this:
2. Rewrite this for me:
3. Refine this for me please:

where the goal is to make LLM modify more when rewriting human text and be more invariant when
modifying LLM-generated text.

4

Published as a conference paper at ICLR 2024

Awesome little shop. The owner really knows his
stuff and you can tell he loves his work. They have
tires and other parts you won't find anywhere else.

Input ReversalHuman GPT

Terrible big shop. The owner has no clue about anything and
it's clear he hates his work. They don't have tires or any other
parts you can find anywhere else.

Transformed

Amazing small boutique. The owner is extremely
knowledgeable about everything and clearly loves his work.
They have an abundant selection of tires and a wide range of
unique parts that you won't find elsewhere.

The shop is fantastic with a knowledgeable and
passionate owner. They offer unique tires and parts
not found elsewhere.

The shop is mediocre with an ignorant and indifferent owner.
They offer generic tires and parts found everywhere else.

The shop is exceptional with a knowledgeable and
enthusiastic owner. They offer unique tires and parts not
found elsewhere.

T T−1

Figure 4: Examples for equivariance. We show an example on the Yelp Review dataset. For sim-
plicity, we use identity transformation p, and use the “opposite meaning” as the equivariance trans-
formation T . GPT data tends to be consistent to the original input after transformation and reversal.

Equivariance. In addition, we hypothesize that GPT data will be equivariant to the data generated
by itself. Equivariance means that, if we transform the input, perform the rewriting, and undo the
transformation, it will produce the same output as directly rewriting the input.

We achieve the transformation for large language models by appending a prompt T to the input and
asking the LLM to produce the transformed output. We denote the reversal of the transformation as
T−1, which is another prompt that writes in the opposite way as T . Equivariance can be measured
by the following distance: L = D(F (T−1, F (p, F (T,x))), F (p,x)).

Here we show two examples for the equivariance transformation prompt T and T−1:

T: Write this in the opposite meaning:
T−1: Write this in the opposite meaning:

T: Rewrite to Expand this:
T−1: Rewrite to Concise this:

By rewriting the sentence with the opposite meaning twice, the sentence should be converted back
to its original if the LLM is equivariant to the examples. Note that this transformation T is based on
the language model prompt.

Output Uncertainty Measurement. We also assume that LLM-generated text will be more stable,
when asked to rewrite multiple times than human-written text. We thus explore the variance of the
output as a detection measurement. Denote the prompt to be p. The k-th generation results from
LLM would be x′

k = F (p,x). Due to the randomness in language generation, x′
k will be different.

We denote the editing distance between two outputs A and B as D(A,B). We construct the un-
certainty measurement as:U =

∑K−1
i=1

∑K
j=i D(x′

i,x
′
j). Note that, in contrast to the invariance and

equivariance, this metric only uses the output, and the original input is not in the calculation of the
output uncertainty.

3.2 MEASURING CHANGE IN REWRITING

We treat the output of LLM as symbolic representations that encode information about the data. In
contrast to Mitchell et al. (2023); Verma et al. (2023), our detection algorithm does not use contin-
uous, numerical representations of the word tokens. Instead, our algorithm operates totally on the
discrete, symbolic representations from the LLM. By prompting LLM, our method obtains addi-
tional information about the input text via the rewriting difference. We will show how to measure
the rewriting change below:

Bag-of-words edit. We use the change of bag-of-words to capture the edit created by LLM. We
compute the number of common bags of n-words divided by the length of the input.

Levenshtein Score. Levenshtein score (Levenshtein, 1966) is a popular metric for measuring the
minimum number of single-character edits, including deletion and addition, to change one string to
the other. We use standard dynamic programming to calculate the Levenshtein distance. A higher
score denotes the two strings are more similar. We use Levenshtein(A,B) to denote the edit distance
between string A and B. Let the rewriting output sk = F (pk,x). We obtain the ratio via:

Dk(x, sk) = 1− Levenshtein(sk,x)
max(len(sk), len(x)

.

5

Published as a conference paper at ICLR 2024

Table 1: F1 score for detecting machine-generated paragraphs. The results are in domain test-
ing, where the model has been trained on the same domain. We bold the best performance on in-
distribution and out-of-distribution detection. Our method achieved over 8 points of improvement
over the established state-of-the-art.

Datasets
Creative Student Yelp Arxiv

Methods News Writing Essay Code Reviews Abstract

GPT Zero-Shot Verma et al. (2023) 54.74 20.00 52.29 62.28 66.34 65.94
GPTZero (Tian, 2023) 49.65 61.81 36.70 31.57 25.00 45.16
DetectGPT Mitchell et al. (2023) 37.74 59.44 45.63 67.39 65.45 66.67
Ghostbuster Verma et al. (2023) 52.01 41.13 42.44 65.97 71.47 76.82
Ours (Invariance) 60.29 62.88 64.81 95.38 87.75 81.94
Ours (Equivariance) 58.00 60.27 60.07 87.32 83.18 76.30
Ours (Uncertainty) 60.27 60.27 57.69 77.14 81.79 83.33

Table 2: F1 score for detecting machine-generated paragraph following the out-of-distribution set-
ting in Verma et al. (2023). Our method achieved over 22 points of improvement over the established
state-of-the-art.

Datasets
Methods News Creative Writing Student Essay

Ghostbuster Verma et al. (2023) 34.01 49.53 51.21
Ours (Invariance) 56.47 55.51 52.77
Ours (Equivariance) 56.87 59.47 51.34
Ours (Uncertainty) 55.04 52.01 47.47

We use ratio because the feature of editing difference should be independent of the text length. The
invariance, equivariance, and uncertainty measured by the above metric will be used as features for
a binary classifier, which predicts the generation source of the text. For details of the algorithm,
please refer to Appendix A.5.

Our design enjoys several advantages. First, since we only access the discrete token output from
LLM, our algorithm requires minimal access to the LLM models. Given that the major state-of-
the-art LLM models, like GPT-3.5-turbo and GPT-4 from OpenAI, are black-box models and only
provide API for accessing the discrete tokens rather than the probabilistic values, our algorithm is
general and compatible with them. Second, since our representation is discrete, it is more robust
in the sense that it will be invariant to the perturbations and shifting in the input space. Lastly, our
symbolic representations enable us to construct the following measurements that are none differen-
tiable, which introduces extra burden and cost for gradient-based adversarial attempts to bypass our
detection model.

4 RESULTS

We conduct experiments on detecting AI-generated text on paragraph level and compare it to the
state of the art. To further understand factors that affect detection performance, we also study the
robustness of our method under input aiming to evade our detection, detection accuracy on text
generated from different LLM sources, and evaluate our method with different LLM for rewriting.

4.1 DATASET

To evaluate our approach to the challenging, paragraph-level machine-generated text detection, we
experiment with the following datasets.

6

Published as a conference paper at ICLR 2024

Table 3: Performance under adaptive prompts aiming to evade our detector. In the ”Single Training
Prompt” column, the detector is trained on a non-adaptive prompt and tested against both the same
prompt and two evasive prompts. Adversarial rephrasing can bypass our detector. In ”Multi Training
Prompt*”, the model is trained using two prompts and tested on a third, different prompt. The last
two rows shows results under adaptive prompts to evade our detection. Training on multiple prompts
enhances our detector’s robustness against machine-generated inputs attempting evasion.

Single Training Prompt Multi Training Prompt*
Test Prompt Code Yelp Arxiv Code Yelp Arxiv

No Adaptive Prompt 95.38 87.75 81.94 92.76 58.04 82.25
Prompt 1 to bypass detection 34.15 61.38 43.81 86.95 69.19 91.89
Prompt 2 to bypass detection 25.64 61.38 50.90 88.88 73.23 93.06

Creative Writing Dataset is a language dataset based on the subreddit WritingPrompts, which is
creative writing by a community based on the prompts. We use the dataset generated by Verma et al.
(2023). We focus on detecting paragraph-level data, which is generated by text-davinci-003.

News Dataset is based on the Reuters 50-50 authorship identification dataset. We use the machine-
generated text from Verma et al. (2023) via text-davinci-003.

Student Essay Dataset The dataset is based on the British Academic Written English corpus and
generated by Verma et al. (2023).

Code Dataset. The goal is to detect if the Python code has been written by GPT, which can be
important for education. We adopt the HumanEval dataset (Chen et al., 2021) as the human-written
code, and ask GPT-3.5-turbo to perform the same task and generate the code.

Yelp Review Dataset. Yelp reviews tend to be short and challenging to detect. We collect 2000
human reviews from the Yelp Review Dataset, and generate concise reviews via GPT-3.5-turbo in a
similar length as the human written one.

ArXiv Paper Abstract. We investigate if we can detect GPT written paragraphs in academic papers.
Our dataset contains 350 abstracts from ICLR papers from 2015 to 2021, which are human-written
texts since ChatGPT was not released then. We use GPT-3.5-turbo to generate an abstract based on
the paper’s title and the first 15 words from the abstract.

4.2 BASELINES

GPT Zero-shot (Verma et al., 2023) performs detection by directly asking GPT if the input is written
by GPT or not. We use the same prompt as Verma et al. (2023) to query GPT.

GPTZero (Tian, 2023) is an commercial machine text detection service.

DetectGPT (Mitchell et al., 2023) is the state-of-the-art thresholding approach to detect GPT-
generated text, which achieved 99-point performance over a longer input context, yet its performance
on shorter text is unknown. It thresholds the curvature of the input to perform detection.

Ghostbuster (Verma et al., 2023) is the state-of-the-art classifier for machine generated text de-
tection. It uses probabilistic output from large language models as features, and performs feature
selection to train an optimal classifier.

4.3 MAIN RESULTS

We use GPT-3.5-Turbo as the LLM to rewrite the input text. Once we obtain the editing distance fea-
ture from the rewriting, we use Logistic Regression (Berkson, 1944) or XGBoost (Chen & Guestrin,
2016) to perform the binary classification. We compare our results on three datasets from Verma
et al. (2023), as well as our created three datasets, in Table 1. Our method outperforms the Ghost-
buster method by up to 29 points, which achieves the best results over all baselines. In Table 2,
we follow the out-of-distribution (OOD) experiment setup in Verma et al. (2023), where we trained
the detection classifier on one dataset and evaluated on the other. For the OOD experiment, our
method still improves by up to 32 points, demonstrating the effectiveness of our approach over prior
methods.

7

Published as a conference paper at ICLR 2024

Table 4: Robustness in detecting outputs from various language models. Using the same GPT-
3.5-Turbo rewriting model, we present F1 detection scores for detecting text from three generation
models across three diverse tasks. In the in-distribution experiment, detectors are trained and tested
on the same model. For out-of-distribution, detectors are trained on text from two generators but
detect text from an unseen third. Overall, our method effectively detects machine-generated text in
both scenarios. Text from the “Ada” model is most easily detected, possibly due to its discernibly
lower quality compared to human-written content.

LLM Model In Distribution Out of Distribution
for Generation Code Yelp arXiv Code Yelp arXiv

Ada 96.88 96.15 97.10 62.06 72.72 70.00
Text-Davinci-002 84.85 65.80 76.51 75.41 51.06 60.00
GPT-3.5-Turbo 95.38 87.75 81.94 91.43 71.42 48.74

Table 5: Effectiveness of detection using various large language models for rewriting. We present de-
tection F1 scores for the same input data rewritten by Ada, Text-Davinci-002, and GPT-3.5. Among
these, GPT-3.5-turbo yields the highest performance in rewriting for detection.

LLM for Datasets
Rewriting News Creative Writing Student Essay Code

Ada 55.73 62.50 57.02 77.42
Text-Davinci-002 55.47 60.59 58.96 82.19
GPT 3.5 turbo 60.29 62.88 64.81 95.38

4.4 ANALYSIS

Detection Robustness against Rephrased Text Generation to Evade Detection. Krishna et al.
(2023); Sadasivan et al. (2023) show that paraphrasing can often evade detection. In Table 1, we
show that our approach can detect GPT text when they are not adversarially rephrased. However,
a sophisticated adversary might craft prompts for GPT such that the resulting text, when rewritten,
undergoes significant changes, thereby evading our detection. We modify the GPT input using the
following rephrases:

1. Help me rephrase it in human style
2. Help me rephrase it, so that another GPT rewriting will cause a lot

of modifications

Table 3 reveals that while our detector, trained on the default single prompt data, can be bypassed by
adversarial rephrasing (left columns). In the right columns, we show results when trained on two of
the prompts and tested on the remaining prompts. The detectors are trained on multi-prompt data,
which enhances its robustness. Even when tested against unseen adversarial prompts, our detector
still identifies machine-generated content designed to elude it, achieving up to 93 points on F1 score.
One exception is on the Yelp dataset; the “no adaptive prompt” has lower performance on “multiple
training prompts” than “single training prompts”. We suspect it is due to the Yelp dataset introducing
a larger data difference when prompted differently, and this “multiple training prompts” setup will
decrease performance due to training and testing on different prompts. In general, results in Table 3
demonstrate that with proper training, our method can be still robust under rephrased text to evade
detection, underscoring the significance of diversifying prompt types when learning our detector.

Source of Generated Data. In our main experiment, we train our detector on text generated from
GPT-3.5. We study if our model can still detect machine-generated text when they are generated
from a different language model. In Table 4, we conduct experiments on text generated from Ada,
text-davinci-002, and GPT-3.5 model. For all experiments, we use the same GPT-3.5 to rewrite.

For in-distribution experiments, we train the detector on data generated from the respective language
model. Despite all rewrites being from GPT-3.5, we achieved up to 96 F1 score points. Notably,
GPT-3.5 excels at detecting Ada-generated content, indicating our method’s versatility in identifying
both low (Ada) and high-quality (GPT-3.5) data, even they are generated from a different model.

8

Published as a conference paper at ICLR 2024

Re
vis

e t
he

 co
de

 wi
th

yo
ur

be
st

eff
ort

He
lp

me p
olis

h t
his

 co
de

Re
wr

ite
 th

e c
od

e w
ith

 GP
T s

tyl
e

Re
fin

e t
he

 co
de

 fo
r m

e p
lea

se

Co
nci

se
the

 co
de

 wi
tho

ut
cha

ng
e t

he
 fu

nct
ion

alit
y

Prompt for Rewriting

0.8

0.9

De
te

ct
io

n
F1

 S
co

re Performance via Individual Rewriting Prompt

(a) Code

Re
vis
e t
his
 wi
th
yo
ur
be
st
eff
ort

He
lp
me
 po
lish
 th
is

Re
wr
ite
 th
is f
or
me

Ma
ke
thi
s fl
ue
nt
wh
ile
do
ing
 m
inim

al
cha

ng
e

Re
fin
e t
his
 fo
r m
e p
lea
se

Co
nci
se
thi
s fo

r m
e a
nd
 ke
ep
 al
l th
e i
nfo
rm
ati
on

Im
pro
ve
 th
is i
n G
PT
 wa
y

Prompt for Rewriting

0.70

0.75

0.80

0.85

De
te
ct
io
n
F1
 S
co
re

Performace via Individual Rewriting Prompt

(b) Yelp

Re
vis

e t
his

 wi
th

yo
ur

be
st

eff
ort

He
lp

me p
olis

h t
his

Re
wr

ite
 th

is f
or

me

Ma
ke

thi
s fl

ue
nt

wh
ile

do
ing

 m
inim

al
cha

ng
e

Re
fin

e t
his

 fo
r m

e p
lea

se

Co
nci

se
thi

s fo
r m

e a
nd

 ke
ep

 al
l th

e i
nfo

rm
ati

on

Im
pro

ve
 th

is i
n G

PT
 wa

y

Prompt for Rewriting

0.6

0.8

De
te

ct
io

n
F1

 S
co

re Performance via Individual Rewriting Prompt

(c) ArXiv

Figure 6: Performance of individual prompt. Different prompts used during rewriting can have a
significant impact on the final detection performance. There is no single prompt that performs best
across all data sources. With a single rewriting prompt, we can obtain up to 90 points of detection
F1 score.

We also evaluate our detection efficiency on the Claude (Anthropic, 2023) generated text on student
essay (Verma et al., 2023), where we achieve an F1 score of 57.80.

In the out-of-distribution experiment, we train the detector on data from two language models, as-
suming it is unaware that the test text will be generated from the third model. Despite a performance
drop on detecting the out-of-distribution test data generated from the third model, our method re-
mains effective in detecting content from this unseen model, underscoring our approach’s robustness
and adaptability, with up to 91 points on F1 score.

0 100 200 300 400
Text Length

0.75

0.80

0.85

0.90

0.95

1.00

F1
 S
co
re

Yelp GPT Detection
Detection via Rewriting

Figure 5: Detection performance as
input length increases. On the Yelp
dataset, we show that longer input en-
ables better detection performance.

Type of Detection Model. Mireshghallah et al.
(2023) showed that model size affects performance in
perturbation-based detection methods. Given the same
input text generated from GPT-3.5, We explore our ap-
proach’s efficacy with alternative rewriting models with
different size. In addition to using the costly GPT-3.5
to rewrite, we incorporate two smaller models, Ada and
Text-Davinci-002, and evaluate their detection perfor-
mance when they are used to rewrite. In Table 5, while
all models achieve significant detection performance, our
results indicate that a larger rewriting language model en-
hances detection performance in our method.

Impact of Different Prompts. Figure 6 displays the de-
tection F1 score for various prompts across three datasets.
While Mitchell et al. (2023) employs up to 100 perturba-
tions to query LLM and compute curvature from loss, our
approach achieves high detection performance using just
a single rewriting prompt.

Impact of Content Length. We assess our detection method’s performance across varying input
lengths using the Yelp Review dataset in Figure 5. Longer inputs, in general, achieve higher de-
tection performance. Notably, while many algorithms fail with shorter inputs (Tian, 2023; Verma
et al., 2023), our method can achieve 74 points of detection F1 score even with inputs as brief as ten
words, highlighting the effectiveness of our approach.

5 CONCLUSION

We introduce an approach to use rewriting editing distance to detect machine-generated text. Our
results demonstrate improved detection performance across several benchmarks and state-of-the-art
detection methods. Our method is still effective when detecting text generated from novel language
models and text generated via prompts that aim to bypass our detection. Our findings show that
integrating the inherent structure of large language models can provide useful information to detect
text generated from those language models, opening up a new direction for detecting machine-
generated text.

9

Published as a conference paper at ICLR 2024

REFERENCES

Chatgpt: Optimizing language models for dialogue, 2023. URL https://chat.openai.com.

Anthropic, 2023. URL https://www.anthropic.com/product.

Mohammad Asfour and Juan Carlos Murillo. Harnessing large language models to simulate re-
alistic human responses to social engineering attacks: A case study. International Journal of
Cybersecurity Intelligence & Cybercrime, 6(2):21–49, 2023.

Anton Bakhtin, Sam Gross, Myle Ott, Yuntian Deng, Marc’Aurelio Ranzato, and Arthur Szlam.
Real or fake? learning to discriminate machine from human generated text. arXiv preprint
arXiv:1906.03351, 2019.

A Stevie Bergman, Gavin Abercrombie, Shannon Spruit, Dirk Hovy, Emily Dinan, Y-Lan Boureau,
Verena Rieser, et al. Guiding the release of safer e2e conversational ai through value sensitive
design. In Proceedings of the 23rd Annual Meeting of the Special Interest Group on Discourse
and Dialogue. Association for Computational Linguistics, 2022.

Joseph Berkson. Application of the logistic function to bio-assay. Journal of the American Statistical
Association, 39(227):357–365, 1944.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Souradip Chakraborty, Amrit Singh Bedi, Sicheng Zhu, Bang An, Dinesh Manocha, and Furong
Huang. On the possibilities of ai-generated text detection. arXiv preprint arXiv:2304.04736,
2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code. 2021.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
785–794. ACM, 2016.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Debby RE Cotton, Peter A Cotton, and J Reuben Shipway. Chatting and cheating: Ensuring aca-
demic integrity in the era of chatgpt. Innovations in Education and Teaching International, pp.
1–12, 2023.

Yao Dou, Maxwell Forbes, Rik Koncel-Kedziorski, Noah A Smith, and Yejin Choi. Is gpt-3 text
indistinguishable from human text? scarecrow: A framework for scrutinizing machine text. arXiv
preprint arXiv:2107.01294, 2021.

Tiziano Fagni, Fabrizio Falchi, Margherita Gambini, Antonio Martella, and Maurizio Tesconi.
Tweepfake: About detecting deepfake tweets. Plos one, 16(5):e0251415, 2021.

Sebastian Gehrmann, Hendrik Strobelt, and Alexander M Rush. Gltr: Statistical detection and
visualization of generated text. arXiv preprint arXiv:1906.04043, 2019.

10

https://chat.openai.com
https://www.anthropic.com/product

Published as a conference paper at ICLR 2024

Daphne Ippolito, Daniel Duckworth, Chris Callison-Burch, and Douglas Eck. Automatic detection
of generated text is easiest when humans are fooled. arXiv preprint arXiv:1911.00650, 2019.

Ganesh Jawahar, Muhammad Abdul-Mageed, and Laks VS Lakshmanan. Automatic detection of
machine generated text: A critical survey. arXiv preprint arXiv:2011.01314, 2020.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. Is bert really robust? natural language
attack on text classification and entailment. arXiv preprint arXiv:1907.11932, 2019.

Daniel Kang, Xuechen Li, Ion Stoica, Carlos Guestrin, Matei Zaharia, and Tatsunori Hashimoto.
Exploiting programmatic behavior of llms: Dual-use through standard security attacks. arXiv
preprint arXiv:2302.05733, 2023.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. arXiv preprint arXiv:2301.10226, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John Wieting, and Mohit Iyyer. Paraphras-
ing evades detectors of ai-generated text, but retrieval is an effective defense. arXiv preprint
arXiv:2303.13408, 2023.

Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics Doklady, 10(8):707–710, 1966.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. Pretrained language
models for text generation: A survey. arXiv preprint arXiv:2201.05273, 2022.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Fatemehsadat Mireshghallah, Justus Mattern, Sicun Gao, Reza Shokri, and Taylor Berg-Kirkpatrick.
Smaller language models are better black-box machine-generated text detectors. arXiv preprint
arXiv:2305.09859, 2023.

Yisroel Mirsky, Ambra Demontis, Jaidip Kotak, Ram Shankar, Deng Gelei, Liu Yang, Xiangyu
Zhang, Maura Pintor, Wenke Lee, Yuval Elovici, et al. The threat of offensive ai to organizations.
Computers & Security, pp. 103006, 2022.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and Chelsea Finn. De-
tectgpt: Zero-shot machine-generated text detection using probability curvature. arXiv preprint
arXiv:2301.11305, 2023.

Yikang Pan, Liangming Pan, Wenhu Chen, Preslav Nakov, Min-Yen Kan, and William Yang
Wang. On the risk of misinformation pollution with large language models. arXiv preprint
arXiv:2305.13661, 2023.

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and Ramesh Karri.
Asleep at the keyboard? assessing the security of github copilot’s code contributions. In 2022
IEEE Symposium on Security and Privacy (SP), pp. 754–768. IEEE, 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. In International Conference on Ma-
chine Learning, pp. 28492–28518. PMLR, 2023.

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Balasubramanian, Wenxiao Wang, and Soheil Feizi.
Can ai-generated text be reliably detected? arXiv preprint arXiv:2303.11156, 2023.

11

Published as a conference paper at ICLR 2024

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Yarin Gal, Nicolas Papernot, and Ross Ander-
son. The curse of recursion: Training on generated data makes models forget. arXiv preprint
arxiv:2305.17493, 2023.

Mohammed Latif Siddiq, Shafayat H Majumder, Maisha R Mim, Sourov Jajodia, and Joanna CS
Santos. An empirical study of code smells in transformer-based code generation techniques. In
2022 IEEE 22nd International Working Conference on Source Code Analysis and Manipulation
(SCAM), pp. 71–82. IEEE, 2022.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu, Alec
Radford, Gretchen Krueger, Jong Wook Kim, Sarah Kreps, et al. Release strategies and the social
impacts of language models. arXiv preprint arXiv:1908.09203, 2019.

Ruixiang Tang, Yu-Neng Chuang, and Xia Hu. The science of detecting llm-generated texts. arXiv
preprint arXiv:2303.07205, 2023.

E Tian, 2023. URL https://gptzero.me.

Vivek Verma, Eve Fleisig, Nicholas Tomlin, and Dan Klein. Ghostbuster: Detecting text ghostwrit-
ten by large language models. arXiv preprint arXiv:2305.15047, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Peng Cui, Tiannan Wang, Zhenxin Xiao, Yifan Hou,
Ryan Cotterell, and Mrinmaya Sachan. Recurrentgpt: Interactive generation of (arbitrarily) long
text. arXiv preprint arXiv:2305.13304, 2023.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,
and Jimmy Ba. Large language models are human-level prompt engineers. arXiv preprint
arXiv:2211.01910, 2022.

Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrikson. Universal and transferable adversarial
attacks on aligned language models. arXiv preprint arXiv:2307.15043, 2023.

12

https://gptzero.me

Published as a conference paper at ICLR 2024

Algorithm 1 Detecting LLM Generated Content via Output Invariance

1: Input: Text input x, rephrase prompt Pk, where k = 1, ...,K.
2: Output: Class prediction ŷ
3: Inference:
4: for k = 1, ...,K do
5: Obtain LLM output Sk = F (Pk,x)
6: Calculate bag-of-words edit Rk and the Levenshtein Score Dk

7: end for
8: Make final prediction via y = C([R1, R2, ..., RK , D1, D2, ..., DK])

Algorithm 2 Detecting LLM Generated Content via Output Equivariance

1: Input: Text input x.
2: Output: Class prediction ŷ
3: Inference:
4: for k = 1, ...,K do
5: Create transformation prompt Tk and inverse transformation prompt T′

k, create rephrase
prompt Pk.

6: Obtain LLM output Mk = F (Tk,x)
7: Obtain LLM output M′

k = F (Pk,Mk)
8: Obtain LLM output Sk = F (T′

k,M
′
k)

9: Calculate bag-of-words edit Rk and the Levenshtein Score Dk

10: end for
11: Make final prediction via y = C([R1, R2, ..., RK , D1, D2, ..., DK])

A APPENDIX

A.1 DATA CREATION

Code Dataset.

Yelp Reviews Dataset.

ArXiv Dataset.

A.2 VISUALIZATION FOR EACH TYPE OF REWRITING

A.3 VISUALIZATION FOR UNCERTAINTY OUTPUT

A.4 VISUALIZATION FOR TEXT DATA THAT MOST CONFUSING

We show text that generated by machine but looks the most like human, and vice versa.

A.5 ALGORITHM

We show the algorithm for invariance, equivariance, and uncertainty based algorithms. We denote
the learned classifier as C.

13

Published as a conference paper at ICLR 2024

Algorithm 3 Detecting LLM generated content via output uncertainty

1: Input: Text input x.
2: Output: Class prediction ŷ
3: Inference:
4: Given rephrase prompt P
5: for k = 1, ...,K do
6: Obtain LLM output Sk = F (P,x)
7: end for
8: for k = 1, ...,K do
9: for j = k, ...,K do

10: Calculate bag-of-words edit Rk,j and the Levenshtein Score Dk,j

11: end for
12: end for
13: Make final prediction via y = C([R1,2, R1,3, ..., RK−1,K , D1,2, D1,3, ..., RK−1,K])

14

	Introduction
	Related Work
	Detecting Machine Generated Text by Rewriting
	Rewriting Text via Language Models and Prompts
	Measuring Change in Rewriting

	Results
	Dataset
	Baselines
	Main Results
	Analysis

	Conclusion
	Appendix
	Data Creation
	Visualization for Each type of Rewriting
	Visualization for Uncertainty Output
	Visualization for Text Data that most Confusing
	Algorithm

