
Bayesian Modelling and Monte Carlo Inference for GAN

Hao He 1 Hao Wang 1 Guang-He Lee 1 Yonglong Tian 1

Abstract
Bayesian modelling is a principal framework to
perform model aggregation, which has been a
primary mechanism to combat mode collapsing
in the context of Generative Adversarial Net-
works (GANs). In this paper, we propose a novel
Bayesian modelling framework for GANs, which
iteratively learns a distribution over generators.
We tailor stochastic gradient Hamiltonian Monte
Carlo with novel gradient approximation to per-
form Bayesian inference. Theoretically, we prove
any generator distribution which produces the
target data distribution is an equilibrium of our
algorithm. Empirical evidence on categorical
distributed data and synthetic high-dimensional
multi-modal data demonstrates the superior per-
formance of our method over the start-of-art multi-
generator and other Bayesian treatment for GANs.

1. Introduction
Generative Adversarial Networks (GAN) (Goodfellow et al.,
2014) is a popular method to learn a distribution on complex
data such as natural images, videos and texts. However, it
is notoriously hard to train and suffers from mode collapse.
There has been a series of works addressing these issues.
One noticeable thread focuses on objective design, which
improves the original Jensen-Shannon divergence with more
stable pseudo-metrics such as f -divergence (Nowozin et al.,
2016), χ2-divergence (Mao et al., 2017), and Wasserstein
distance (Arjovsky et al., 2017). However, when a single
generator does not include enough model capacity to capture
the granularity in data distribution practically, evidently the
resulting generator still suffer from inaccurate results no
matter which distance metric is employed.

An alternative remedy is to learn multiple generators instead
of a single generator. This type of methods (Hoang et al.,
2018; Tolstikhin et al., 2017; Wang et al., 2016) is motivated

1Computer Science and Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology. Correspondence to: Hao He
<haohe@mit.edu>.

Presented at the ICML 2018 workshop on Theoretical Foundations
and Applications of Deep Generative Models, Stockholm, Sweden,
PMLR 80, 2018. Copyright 2018 by the author(s).

by a straightforward intuition that multiple generators can
better model multi-modal distributions since each generator
only needs to capture a subset of the modes. To entail
model aggregation, Bayesian modelling is a natural and
principle framework to articulate the aggregation process in
a probabilistic way.

Recently, Saatci and Wilson (Saatci & Wilson, 2017) pro-
poses a probabilistic framework for GAN under Bayesian
inference, which is called Bayesian GAN. It shows that
modelling the distribution of generator helps alleviate mode
collapse and motivates interpretability of the learned gen-
erators. The probabilistic model is built upon conditional
distribution of generator and discriminator, whose maxi-
mum likelihood estimation can be realized as a metaphor of
typical GAN objective. Finally, the distribution of generator
is obtained by marginalizing the joint distribution defined
by the conditionals.

In this paper, we follow the idea of learning a distribution of
generators, since it entails a general form of learning GAN
with multiple (or infinite) generators. However, we prove
that existing Bayesian method (Saatci & Wilson, 2017) may
lead to incompatible conditionals, which suggest that the
underlying joint distribution actually does not exist. As a
remedy, we propose a novel Bayesian modeling framework,
which models the distributions of generators and discrimi-
nators separately. Our main contributions are:

• We prove the previous Bayesian method (Saatci &
Wilson, 2017) for any minimax GAN objective induces
incompatibility of its defined conditional distributions.

• We prove that, under our Bayesian framework, any
generator distribution faithful to the data distribution
is an equilibrium, which does not hold for the previous
Bayesian method (Saatci & Wilson, 2017)

• We propose two special Monte Carlo inference algo-
rithms for our Bayesian model which efficiently ap-
proximate the gradient of a non-differentiable term.

• Empirical studies on categorical distributed data and
synthetic high-dimensional multi-modal data demon-
strate the superiority of the proposed framework over
the state-of-the-art GAN methods.

Bayesian Modelling and Monte Carlo Inference for GAN

2. Related Work
Generative Adversarial Networks is powerful class of
methods to learn a generative model for any complex tar-
get data distribution. There is game between a generator
and a discriminator. Both of them adapt their strategies to
minimize their own loss function involving the other:

min
θg
Lg(θg; θd), min

θd
Ld(θd; θg). (1)

Eqn. 1 gives a general mathematical form of the game. The
loss functions (termed as GAN objective in this paper) are
elaborately chosen such that at the equilibrium, the generator
can generate a target data distribution. Table 1 summarizes
several widely used GAN objectives, including the original
min-max version where Lg(θg; θd) = −Ld(θd; θg), non-
saturating version of original GAN (Goodfellow, 2016),
LSGAN (Mao et al., 2017), and WGAN (Arjovsky et al.,
2017). For readers unfamiliar with GAN, we refer to Sec. 3.1
for a detailed explanation of the notations.
Training GAN with multiple generators is considered in
several recent works to mitigate the mode collapse problem.
In the spirit of boosting algorithm, (Wang et al., 2016) pro-
pose to incrementally train new generator using a subset of
training data that are not well captured by previous genera-
tors, while (Tolstikhin et al., 2017) further propose a more
robust mechanism to reweight samples in the training set for
new generator. From the perspective of game theory, MIX-
GAN (Arora et al., 2017) extends the game between a single
generator and discriminator to the multiple-player setting.
Other works resort to third party classifiers to help multiple
generators and discriminators achieve better equilibrium,
such as MGAN (Hoang et al., 2018), MAD-GAN (Ghosh
et al., 2017).
Bayesian GAN (Saatci & Wilson, 2017) is a different ap-
proach which models a joint distribution of generators
and discriminators by giving the conditional posteriors in
Eqn. 2 with the likelihood terms (exp{−Lg(θg; θd)} and
exp{−Ld(θd; θg)}), and priors (p(θg|αg) and p(θd|αd)) pa-
rameterized by αd and αg . As we can see, the likelihood is
specifically designed such that maximizing the likelihood
of the conditional distribution is equivalently optimizing
the corresponding GAN objective. The authors argue that
instead of doing point mass maximum likelihood estimation
as optimization based GAN does, marginalizing the gener-
ator’s distribution which is multi-modal itself offers better
ability to learn a multi-modal data distribution.

p(θg|θd) ∝ exp{−Lg(θg; θd)}p(θg|αg).
p(θd|θg) ∝ exp{−Ld(θd; θg)}p(θd|αd).

(2)

In order to obtain the generator’s marginal distribu-
tion, Stochastic Gradient Hamiltonian Monte Carlo
(SGHMC) (Chen et al., 2014) is employed. SGHMC is
a method to generate samples from a given distribution p(x)
as long as it is differentiable.1 With SGHMC, Bayesian

1We refer reader to the original paper for more details.

GAN updates the Monte Carlo samples, {θ(t)
d,m}Mm=1 and

{θ(t)
g,m}Mm=1 as described in Eqn. 3.

{θ(t+1)
g,m }Mm=1 ∼ p(θg|{θ

(t)
d,m}

M
m=1) = (

∏
m

p(θg|θ(t)
d,m))

1
M

= exp{− 1

M

∑
m

Lg(θg; θ(t)
d,m)}p(θg|αg).

{θ(t+1)
d,m }

M
m=1 ∼ p(θd|{θ(t)

g,m}Mm=1) = (
∏
m

p(θd|θ(t)
g,m))

1
M

= exp{− 1

M

∑
m

Ld(θd; θ(t)
g,m)}p(θd|αd).

(3)

The underlying distributions q(t)
g (θg), q

(t)
d (θd) represented

by the Monte Carlo samples are actually updated as Eqn. 4.

q(t+1)
g (θg) ∝ exp{−E

θd∼q(t)d

Lg(θg; θd)}p(θg|αg).

∝ exp{E
θd∼q(t)d

log p(θg|θd)}

q
(t+1)
d (θd) ∝ exp{−E

θg∼q(t)g
Ld(θd; θg)}p(θd|αd)

∝ exp{E
θg∼q(t)g

log p(θd|θg)}.

(4)

To facilitate discussion, we categorize GAN frameworks
into the following taxonomy: optimization based method
and probabilistic method. Optimization based method sets
up an explicit mini-max game between the generator and
discriminator, where an equilibrium typically characterize a
generator faithful to data distribution in an explicit way. In
probabilistic method, generators and discriminators evolve
as particles of underlying distributions, where an equilib-
rium is searched from a stochastic exploration in the distri-
bution space (of the generators and discriminators).

3. Methodology
The section is organized as following. We first summarize
the notations used in the paper. Second, we elaborate our
Bayesian modelling for GAN and develop constituent prior
and likelihood formulations. Then we make a detailed com-
parison with previous Bayesian method, which highlights
theoretical difference between the methods. Finally, we
develop algorithms to infer the posterior for our Bayesian
modelling.

3.1. Notations

In this paper, we aim to learn a data distribution pdata(x),
with sample x drawn from X . Our generator and discrim-
inator are parameterized by θg ∈ Θg and θd ∈ Θd. A
generator with parameter θg defines a mapping from a ran-
dom noise vector z ∼ pz to a random vector G(z; θg) over
the data space X which induce a generated data distribu-
tion pgen(x; θg). A discriminator is a function of data to

Bayesian Modelling and Monte Carlo Inference for GAN

Table 1. Common GAN objectives.

Ld(θd; θg) Lg(θg; θd)
GAN (MIN-MAX) −Ex∼pdata [logD(x; θd)]− Ex∼pgen(·;θg)[log(1−D(x; θd))] −Ld(θd; θg)

GAN (NON-SATURATING) −Ex∼pdata [logD(x; θd)]− Ex∼pgen(·;θg)[log(1−D(x; θd))] −Ex∼pgen(·;θg)[logD(x; θd)]
WASSERSTEIN GAN −Ex∼pdata [D(x; θd)] + Ex∼pgen(·;θg)[D(x; θd)] −Ld(θd; θg)

LEAST-SQUARES GAN −Ex∼pdata [(D(x; θd)− 1)2]− Ex∼pgen(·;θg)[D(x; θd)
2] −Ex∼pgen(·;θg)[(D(x; θd)− 1)2]

a probability score D(x; θd) : X → [0, 1] 2. Further, we
use qg(θg) ∈ PΘg , qd(θd) ∈ PΘd to denote the distribution
over generators and discriminators respectively.

The data distribution generated by generators under the
distribution qg(θg) is naturally a mixture of data distri-
bution given by every single generator, pmodel(x) =
Eθg∼qg(θg)[pgen(x; θg)]. Our goal is to learn a generator
distribution such that the total mixture of generated data
distribution matches our target, i.e. pmodel(x) ' pdata(x).

Lg(θg; θd) and Ld(θd; θg) denote loss functions of genera-
tor and discriminator. The common choices3 are listed in
Table 1. With a slight abuse of the notation, we equalize
Lg(θg;D(·; θd)) to Lg(θg; θd) and extend the notation by
replacingD(·; θd) with any functionD∗, i.e., Lg(θg;D∗(·))
represents a loss function for the generator given a virtual
discriminator D∗. Similarity Ld(θd; p(·)) represents the
loss function for discriminator given a virtual generator that
generates data from distribution p(·).

3.2. Bayesian Modelling for GAN

In this section, we first introduce the likelihood function
and desired prior, and then elaborate an iterative posterior
refinement algorithm with theoretical analysis.

Likelihood. The likelihood function should encode the
information that distributionally reflect the loss of generators
Lg and discriminators Ld. An ideal solution is to form a
distribution that is proportional to quantities that evaluates
such fitness:

p(θg) ∝ exp{−Lg(θg;D(t))}.

p(θd) ∝ exp{−Ld(θd; p(t)
model)}.

(5)

where p(t)
model(x) = E

θg∼q(t)g
[pgen(x; θg)] is the mixed data

distribution under current generator distribution q(t)
g and

D(t)(·) = E
θd∼q(t)d

[D(·; θd)] is the averaged discriminating

score function under current discriminator distribution q(t)
d .

We emphasize the difference between that our likelihood
model and that of Bayesian GAN (Eqn. 4). In stead of us-
ing ’expectation of loss values’ (e.g. E

θg∼q(t)g
Ld(θd; θg))

as Bayesian GAN did, we propose to use ’loss value of ex-
pectation’ (e.g. Ld(θd;Eθg∼q(t)g

[pgen(·; θg))]). Computing

2Sometimes X → R according to different GAN objective.
3 The concepts of minimax version and non-saturating version

of vanilla GAN are first introduced in (Goodfellow, 2016).

the loss value of mixed data distribution makes more sense
since our goal is matching to expectation of generated data
distribution to the target data distribution.

Prior. While the likelihood function is rather straightfor-
ward, an ideal prior is more involved. When the generated
data distribution is increasingly close to the real data distri-
bution, there will be decreasing information for discrimina-
tor to distinguish between them; the discriminator will tend
to assign equal scores to all data samples, resulting in equal
likelihoods for all generators. At that stage, it is better to
keep the generator distribution the same as the previous time
step, since it already generates the desired data distribution
perfectly. Hence, we use the generator distribution in the
previous time step as a prior for the next time step. Such
dynamically evolving prior for generator turns out to be
crucial, In Sec. 3.3 we show the Bayesian model in previous
work suffer from bad convergence due to its fixed weakly
informative prior.

In contrast, we set a uniform improper prior for the dis-
criminator to pursuit unrestricted adaptability to evolving
generators.

Posterior. Integrating the prior mentioned above and the
likelihood in Eqn. 5, we formulate our iterative Bayesian
model as

q(t+1)
g (θg) ∝ exp{−Lg(θg;D(t))} · q(t)

g (θg),

q
(t+1)
d (θd) ∝ exp{−Ld(θd; p(t)

model)}.
(6)

This iterative process for updating q(t)
g and q(t)

d can be uni-
versally applied to any common GAN objectives with a
guarantee of effectiveness (i.e., any desired generator distri-
bution will be a convergence point of the iteration).

Analysis. Theorem 1 shows that our iterative process is
theoretically valid. Note that, here our theorem is stated in
the setting of the vanilla GAN objective. While its general
version is articulated in the supplementary which applies to
any other GAN objectives, such as WGAN (Arjovsky et al.,
2017) and LSGAN (Mao et al., 2017).

Theorem 1. Assume the GAN objective in Eqn. 6 is min-
max vanilla GAN objective in Table 1. If there exists an
optimal generator distribution q∗g(θg) satisfying p∗model ,
Eθg∼q∗g [pgen(·; θg)] = pdata, then there exists a discrimi-
nator distribution q∗d such that D∗(·) , Eθd∼q∗dD(·; θd) ≡
0.5. Moreover q∗g and q∗d are the fix points of the iteration
defined in Eqn. 6.

Bayesian Modelling and Monte Carlo Inference for GAN

Proof. First, with Eqn. 7 and Eqn. 8 we show q∗d(θd) ∝
Ld(θd; p∗model) satisfies Eθd∼q∗dD(·; θd) ≡ 0.5. In the fol-
lowing equations, S(θd) is the symmetric discriminator of
θd whose definition is delayed to the next paragraph after
the proof.

q∗d(θd)

∝ Ex∼pdata
[logD(x; θd)] + Ex∼p∗model

[log(1−D(x; θd))]

= Ex∼pdata
[logD(x; θd) + log(1−D(x; θd))]

⇒ q∗d(θd) = q∗d(S(θd)),

(7)

Eθd∼q∗dD(x; θd) =

∫
θd∈Θd

q∗d(θd)D(x; θd)dθd

=
1

2
(

∫
θd

q∗d(θd)D(x; θd) +

∫
θ′d=S(θd)

q∗d(θ′d)D(x; θ′d))

=
1

2

∫
θd∈Θd

q∗d(θd)(D(x; θd) +D(x;S(θd)))dθd

=
1

2

∫
θd∈Θd

q∗d(θd) · 1 · dθd =
1

2
.

(8)
Second, according Eqn. 9, we know Lg(θg;D∗) is a con-
stant which leads q∗g(θg) ∝ exp{−Lg(θg;D∗)} × q∗g(θg).

Lg(θg;D∗) = Ex∼pgen(·;θg)[logD∗(x)]

= log(0.5),∀x ∈ X .
(9)

Note that, in the proof we implicitly make two very weak
assumptions of the discriminator parameter’s space. First,
for any two different parameters θd 6= θ′d, the discrimina-
tor functions are not equivalent, i.e. D(x; θd) 6≡ D(x; θ′d).
Second, the space of discriminator are symmetric which
means for any θd ∈ Θd, there is a θ′d ∈ Θd such that
D(x; θd) ≡ 1−D(x; θ′d). 4 According to the first assump-
tion, θ′d is unique. Thus we further define an operator S(θd)
as the mapping from θd to its symmetric counterpart θ′d.

3.3. Comparison with Bayesian GAN

In this section, we compare our model with Bayesian
GAN (Saatci & Wilson, 2017) (refered as BGAN in the
rest of the paper) and explain the motivation of our method.

As showed in Eqn. 6 and Eqn. 4, the first difference is the
choice of prior distributions. BGAN manually set weakly
informative prior for both the generator and the discrim-
inator. Hence during the iterative process, the generator
distribution only relies on the previous discriminator distri-
bution, which might be problematic when the discriminator
becomes non-informative as we mentioned in Sec. 3.2.

4In the case of D(x; θd) : X → [0, 1], θd and θ′d being sym-
metric means D(x; θd) ≡ 1 − D(x; θ′d) while in the case of
D(x; θd) : X → R, symmetry means D(x; θd) ≡ −D(x; θ′d).

The second difference happens in the choice of likelihood.
BGAN defines its likelihood as distribution condition on a
single parameter which satisfies the property that its maxi-
mum likelihood estimation reduces to the traditional GAN
objective. However, we argue that since our goal is to learn
a generator distribution, it would more preferable to directly
build a Bayesian model on the distribution of generators.

Below we provide two theoretical analyses to show the
inappropriateness of BGAN in certain settings.

Compatibility Issue
In this part, we show BGAN is not suitable for any min-
max-style GAN objective due to the incompatibility of its
conditional posterior. This issue may limit the usage of
BGAN since many common choices of GAN objective are
in min-max fashion, such as the original GAN and WGAN.

By iteratively sampling from the conditional posterior in
Eqn. 2, BGAN implicitly samples from a joint posterior
distribution of θd and θg. The corresponding marginal dis-
tribution is supposed to give a good generator distribution
that can produce the target data distribution. However, our
theoretical analysis shows that such a presumed joint distri-
bution does not exist. Specifically, according to Lemma 1,
the existence of a joint distribution satisfying Eqn. 2 requires
the GAN objective L(θd, θg) = Ld(θd; θg) = −Lg(θg; θd)
to be decomposable, i.e. ∃φg, φd, s.t. L(θg, θd) = φg(θg) +
φd(θd). Apparently, no GAN objective L(θd, θg) is decom-
posable. Therefore, conditional posteriors defined in Eqn. 2
are incompatible. Sampling with incompatible conditional
distribution is problematic and leads unpredictable behav-
ior (Arnold & Press, 1989; Chen & Ip, 2015).

Lemma 1. Assume a joint distribution p(x, y) of vari-
able X and Y . Its corresponding conditional distribu-
tions have the forms p(x|y) ∝ exp{L(x, y)}qx(x) and
p(y|x) ∝ exp{−L(x, y)}qy(y) only if X and Y are in-
dependent, i.e., p(x, y) = p(x)p(y) and L(x, y) is decom-
posable, i.e., ∃Lx and Ly, L(x, y) = Lx(x) + Ly(y).
Proof.

p(x|y) = α(y) exp{L(x, y)}qx(x),

p(y|x) = β(x) exp{−L(x, y)}qy(y),

=⇒ p(x, y)2 = p(x|y)p(y)× p(y|x)p(x)

= p(x)p(y)α(y)β(x)qx(x)qy(y)

=⇒ X,Y are independent.
=⇒ p(x) = p(x|y)

=⇒ L(x, y) = log p(x)− log qx(x)− logα(y)

=⇒ L(x, y) is decomposable.

(10)

where α(y) = (
∫

exp{L(x, y)}qx(x)dx)−1 and β(x) =
(
∫

exp{−L(x, y)}qy(y)dy)−1.

Convergence Issue

Bayesian Modelling and Monte Carlo Inference for GAN

In this part, we theoretically analyze a simple task of learn-
ing a Bernoulli distribution and show that BGAN fails in
converging to the desired solution.

Consider the setting where X = {0, 1} is the data space,
Θd = {θ0

d, θ
1
d} and Θg = {θ0

g , θ
1
g} are the space of

generator and discriminator parameters. The data dis-
tributions captured by the generators are the following
Bernoulli distributions pgen(x; θ0

g) = Bern(x; 0) and
pgen(x; θ1

g) = Bern(x; 1), while the discriminators are
D(x; θ0

d) = ε1[x=1] + (1 − ε)1[x=0] and D(x; θ1
d) =

ε1[x=0] + (1 − ε)1[x=1]. Further, any distribution of gen-
erators can be parameterized as qg(θg; γ) = γ1[θg=θ1g] +

(1−γ)1[θg=θ0g]. Suppose the target data distribution we aim
to learn is pdata = Bern(λ). Lemma 2 below shows that
the iterative process described by Eqn. 4 in BGAN fails to
converge to the desired generator distribution.

Note that although we take the Bernoulli distribution as an
example here, this issue is applicable to any distribution over
a finite data set X with BGAN. The categorical distribution
example in Sec. 4 empirically verifies this and shows that
our Bayesian model does not suffer from this problem.

Lemma 2. There exists λ ∈ (0, 1) such that the desired gen-
erator distribution q∗g(θg) , qg(θg; γ = λ) is not a fixed
point of the iterative process in Eqn. 4. Here we assume the
GAN objective is original min-max version while the follow-
ing proof can be easily adapted to other GAN objectives.

Proof. Assume at stage t, q(t)
g reaches q∗g . In next itera-

tion, q(t+1)
d (θd) ∝ exp{Ex∼pdata

[logD(x; θd) + log(1 −
D(x; θd))]}p(θd|αd) ∝ (ε(1− ε))−1p(θd|αd) ∝ p(θd|αd).
With q(t+1)

d (θd) = p(θd|αd), q(t+2)
g will be proportional

to exp{Eθd∼p(θd|αd),x∼pgen(·;θg) log(D(x; θd))}p(θg|αg),
which is not relevant to λ. Thus we can find a λ such
that q(t+2)

g 6= q
(t)
g = q∗g .

3.4. Inference Algorithm

So far we have introduced our Bayesian modelling for GAN.
In this section we develop novel inference algorithms to
compute the posterior. Similar to most complex Bayesian
methods, exact calculation of the posterior is intractable.
Following the strategy in (Saatci & Wilson, 2017), we adopt
Stochastic Gradient Hamiltonian Monte Carlo to generate
samples from the posterior. In each iteration, M Monte
Carlo samples {θ(t)

g,m}Mm=1 are generated to approximate the
generator distribution q(t)

g .

∇θd log q
(t+1)
d (θd) = −∇θdLd(θd; p

(t)
model)

= − 1

Mg

Mg∑
m=1

∇θdLd(θd; pgen(·; θ(t)
g,m)),

(11)

Algorithm 1 Our Meta Inference Algorithm

Input: Initial Monte Carlo samples of {θ(0)
d,m}

Md
m=1 and

{θ(0)
g,m}Mg

m=1, learning rate η, SGHMC noise factor α,
number of updates in SGHMC procedure L.
for t = 1, · · · do

for m = 1 to Md do
θd,m ← θ

(t)
d,m

for l = 1 to L do
n ∼ N (0, 2αηI)

v← (1− α)v + η∇θd log q
(t+1)
d (θd,m) + n

θd,m ← θd,m + v
end for
θ

(t+1)
d,m ← θd,m

end for
for m = 1 to Mg do
θg,m ← θ

(t)
g,m

for l = 1 to L do
n ∼ N (0, 2αηI)

v← (1− α)v + η∇θg log q
(t+1)
g (θg,m) + n

θg,m ← θg,m + v
end for
θ

(t+1)
g,m ← θg,m

end for
end for

∇θg log q(t+1)
g (θg) = −∇θgLg(θg;D(t)) +∇θg log q(t)

g (θg)

= −∇θgLg(θg;
1

Md

∑
m

D(·; θ(t)
d,m)) +∇θg log q(t)

g (θg).

(12)

Algorithm 1 is our meta algorithm based on SGHMC. As
shown in Eqn. 11 and Eqn. 12, the gradients come from two
parts: the GAN objective Lg,Ld and the prior q(t)

g . Obtain
GAN objective’s gradient is easy while computing the prior
gradient, ∇θg log q

(t)
g (θg), is actually non-trivial since we

have no exact analytic form of∇θg log q
(t)
g (θg).

To address this challenge, we propose the following two
methods to approximate ∇θg log q

(t)
g (θg), leading to two

practical inference algorithms.

Gaussian Mixture Approximation (GMA): Although the
analytic form of the distribution q(t)

g (θg) is unknown, we
have Mg Monte Carlo samples {θ(t)

g,m}Mg

m=1 from it which
enables us to directly approximate the distribution as a Mix-
ture of Gaussian in Eqn. 13, where σ is a hyperparameter
and C is the normalization constant.

q(t+1)
g (θg) ≈ C exp{

Mg∑
m=1

‖θg − θ(t)
g,m‖22

2σ2
} (13)

Bayesian Modelling and Monte Carlo Inference for GAN

0 200 400 600 800 1000
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6
L1

 D
ist

an
ce

 (l
ow

er
 is

 b
et

te
r)

BGAN (minimax)
BGAN (non-saturating)
BGAN (least-squares)
Ours (minimax)
Ours (non-saturating)
Ours (least-squares)

Figure 1. The l1 distance between generated data distribution and
the target versus the number of iterations for our model (in solid
line) and BGAN (in dash line). The results with different GAN
objectives are indicated by different colors.

Thus the prior gradient can be approximated as following.

∇θg log q(t+1)
g (θg) ≈

Mg∑
m=1

1

σ2
(θg − θ(t)

g,m). (14)

Partial Summation Approximation (PSA): Based on
Eqn. 12, we observe that the gradient of the prior can be
recursive unfolded as a summation over all historical GAN
objective gradients, shown as:

∇θg log q(t+1)
g (θg) = −∇θgLg(θg;D(t)) +∇θg log q(t)

g (θg)

= −
t∑
i=0

∇θgLg(θg;D(i)). (15)

It indicates that if we can store all historical discriminator
samples {θ(i)

d,m}
t,Md

i=1,m=1, the prior gradient can be computed
exactly via the summation. However, computing gradients
by all discriminator samples costs huge amount of storage
and computational time, which is unaffordable. Hence we
propose to maintain a subset of discriminators by subsam-
pling the whole sequence of discriminators.

4. Experiments
4.1. Categorical Distribution

Setup: In this toy example, we consider the case
where X , Θg, and Θd are all finite sets, specifically
X = {x1, · · · ,xN}, Θg = {θ1

g , · · · , θ
Ng
g }, Θd =

{θ1
d, · · · , θ

Nd

d }. The target data distribution is a categor-
ical distribution Cat(λ1:N) with λi = pdata(xi) as the
probability of generating data xi. The data distribution
generated by generator i is another categorical distribu-
tion pdata(x; θig) = Cat(αi1:N). Similarly, the distributions
of generator and discriminator can also be parameterized
as categorical distributions, i.e. qg(θg) = Cat(β1:Ng) and
qd(θd) = Cat(γ1:Nd

).

In practice, we set N = 10, Ng = 20, Nd = 100. The
parameters λ1:N of the categorical distribution are obtained
by firstly sampling i.i.d {λ̃j}Nj=1 from the uniform distri-

bution U [0, 1] and then normalizing λj =
λ̃j∑N

j=1 λ̃j
. Other

categorical distribution parameters αi1:N , β1:Ng
and γ1:Nd

are also initialized in a similar way. For the discrimina-
tors, their function values are randomly generated from
{D(xi; θ

j
d)}

N,Nd

i=1,j=1 ∼ U [0, 1].

Metric: We employ l1 distance for evaluation which can be
directly computed on categorical distributions as follows.

Dl1(pdata, pmodel) =
∑
x∈X
|pdata(x)− pmodel(x)|. (16)

Evaluation: Our Bayesian model (Eqn. 6) and the BGAN
(Eqn. 4) are evaluated with three different GAN objectives:
min-max, non-satuaring and LSGAN. which are listed in
Table 1. In each iteration step, the distributions of generator
and discriminator are updated in a closed form since the
normalization constant of the categorical posterior can be
easily calculated via summation.

Result: Fig. 1 shows the curves of l1 distance as a function
of number of iterations. For each curve, 20 random trials are
averaged. Our model converges to the optimum no matter
which objective is employed, showing the robustness of our
method. However, the BGAN model is quickly trapped in
a bad equilibrium. This might be attributed to the fixed
prior of BGAN model which restricts the model space that
is explored, while our model maintains a dynamic prior
for each iteration which encourages the model to explore
towards the optimum.

4.2. High-dimensional Multi-modal Synthetic Dataset

In this experiment, we evaluate our model with two different
inference algorithms proposed in Sec. 3.4 (denoted as ours-
GMA and ours-PSA). We also compare with three baselines:
1) GAN: naively trained multiple generators in the vanilla
GAN framework; 2) MGAN: Mixture GAN (Hoang et al.,
2018) which is the start-of-art method to train GAN with
multiple generators; 3) BGAN: Bayesian GAN (Saatci &
Wilson, 2017).

Setup: We consider a learning task in a high dimensional
space X = RD. The target distribution is a uniform mixture
of n modes, each lying in a d-dimensional sub-space of X .
We call this d-dimensional sub-space as intrinsic sub-space
of the i-th mode. Specifically, the data of the i-th mode is
generated by the following process,

z ∼ U [−1, 1]d, x = Ai(z + bi), (17)
where entries of the affine transformation matrix Ai,jk ∼
N (0, σ2

A) and the bias vector bi ∼ N (0, σ2
b Id) are drawn

from the corresponding Gaussian distributions.

In our experiment, n, D, and d are set to 10, 100, and 2.

Bayesian Modelling and Monte Carlo Inference for GAN

GAN + GAN-MM

MGAN + GAN-MM

BGAN + GAN-MM

Ours-GMA + GAN-MM

Ours-PSA + GAN-MM
Figure 2. Visualization of the projected hit sets of all models trained with GAN-MM objective. The top two rows show the results of
optimization based methods.The bottom three rows present probabilistic method results. In each row, projected hit sets for each mode are
plotted in different panels. The red boxes in each panel indicate the region U [−1, 1]2 where the target data uniformly distributed. The
data points produced by different generators of a model is painted with different colors.

Hyper-parameters for A and b are set to be σA = σb = 5.
Each model train ten generators (ten Monte Carlo generator
samples for probabilistic models).

Metric: We define projection error εp for generated data
sample x as the minimum of Euclidean distance between
x and the intrinsic sub-spaces of the modes i.e. εp(x) =

mini εi(x) , ‖x−Ai(A
T
i Ai)

−1AT
i x‖2. Based on the fact

that the average distance between the data from two different
modes is 800, we set a threshold of η = 40. Therefore only
the data whose Euclidean distance to the subspace of the
mode lowers than η is considered as belonging to that mode.

The trained models are evaluated based on {xk}Kk=1 ∼
pmodel, the data samples it generates. We define hit set
Hi , {xk|εi(xk) < η} which indicates the data samples
belong to each mode. We further define projected hit set,
PHi , {(AT

i Ai)
−1AT

i x− bi|x ∈ Hi} to project data in
each hit set back to their intrinsic sub-space.

Here we introduce three evaluation metrics: hit ratio, hit
error, and cover error. Hit ratioHr ,

∑n
i=1|Hi|
K is the per-

centage of generated data actually belonging to the ground

truth mode. Hit error He ,
∑n

i=1

∑
x∈Hi

εi(x)∑n
i=1|Hi| is the av-

eraged Euclidean distance between the data and the in-
trinsic sub-space of the mode. The last metric cover er-
ror Ce is to evaluate how well the generated data covers
each mode. Essentially it computes the KL-divergence be-
tween the estimated distribution of samples in PHi and
the uniform distribution over [−1, 1]d. Formally, it is
defined as the averaged KL-divergence on n modes i.e.
Ce , 1

n

∑n
i=1 KL(p̂(·;PHi)‖U [−1, 1]d). The intuition is

that if the generated is close to the ground truth distribution,
they should be uniformly distributed in the square area of
each mode.

Model Architecture: For fair comparison, we use the same
network architecture for each model. Each generator or dis-
criminator is a three layer perceptron. For the generator, the
dimensions of input, hidden layer and output are 10, 1000,
and 100 respectively. For the discriminator, the dimensions
of input, hidden, output layers are 100, 1000, and 1. All
activation functions are leaky ReLU (Maas et al., 2013).

Training Details: All models are optimized by
Adam (Kingma & Ba, 2014) with a learning rate of 10−4.

Bayesian Modelling and Monte Carlo Inference for GAN

BGAN + WGAN

Ours-GMA + WGAN

Ours-PSA + WGAN
Figure 3. Visualization of the projected hit sets of three probabilistic models trained with the WGAN objective.

For probabilistic methods, the SGHMC noise factor (α in
Algorithm 1) is set as 10−1.

Result: We evaluate all algorithms under the four different
GAN objectives introduced in Table 1 referred to as GAN-
MM, GAN-NS, WGAN and LSGAN here.

Optimization-based v.s. probabilistic
Table 2 summarizes the results in terms of hit ratio and
hit error. Probabilistic methods including our algorithms
and BGAN always achieve a hit ratio of 1, which means
every data point generated from these models is very close
to one mode of the target distribution. On the other hand,
optimization based methods, both GAN and MGAN, con-
sistently have a significantly larger hit error, and sometimes
may even generate data samples that do not belong to any
mode. Moreover, the data distribution generated by the
optimization-based methods fits the target uniform distribu-
tion much worse than its probabilistic counterparts, which
is quantitatively reflected in the cover error showed in Ta-
ble 3 and visually demonstrated by the projected hit sets
in Fig. 2. According to Fig. 2, data generated by GAN or
MGAN tend to be under dispersed and hardly cover the
whole square region of the true mode, while data generated
by probabilistic methods aligns much better with the ground
truth distribution. We attributes this superiority to stronger
exploration power in the generator space coming from the
randomness in probabilistic methods.

Bayesian GAN v.s. our methods
The incompatibility issue of BGAN with minimax-style
GAN objectives theoretically derived in Sec. 3.3 is empir-
ically verified in our experiments. As visualized in Fig. 2,
with the GAN-MM objective, BGAN is trapped in a local
equilibrium and fails in capturing one mode of the true data.
Besides, as shown in Table 3, BGAN with the WGAN ob-
jective achieves much poorer coverage than with other GAN
objectives, while our model is much more robust to the

Table 2. Hit ratios (Hr) and hit errors (He) of different methods
with different GAN objectives. Each cell containsHr,He.

GAN-MM GAN-NS WGAN LSGAN

GAN 0.86, 22.6 0.85, 23.1 0.78, 26.7 0.74, 23.1
MGAN 0.82, 24.2 0.84, 25.5 0.67, 31.7 0.81, 23.6

BGAN 1.0, 5.5 1.0, 6.4 1.0, 12.1 1.0, 6.3
OURS-GMA 1.0, 7.4 1.0, 7.7 1.0, 15.5 1.0, 5.3
OURS-PSA 1.0, 5.8 1.0, 6.4 1.0, 12.5 1.0, 6.4

Table 3. Cover errors Ce of different methods with different GAN
objectives. Note, when the model failed to capture all the modes of
data distribution, by definition cover error will be∞, in this case,
the averaged KL-divergence on modes captured by the model is
reported in brackets.

GAN-MM GAN-NS WGAN LSGAN

GAN 12.11 8.86 7.20 ∞ (12.07)
MGAN 5.46 6.31 5.00 ∞ (4.25)

BGAN ∞ (1.73) 1.76 4.32 1.80
OURS-GMA 1.84 1.73 3.01 1.79
OURS-PSA 1.75 1.75 2.28 1.74

choice of GAN objectives (consistently lower cover errors).
A qualitatively comparison is made in Fig. 6 which shows
the data distribution generated by BGAN tends to shrink.

More visual illustrations under different GAN objectives are
shown in the supplementary Sec. 6.2.

5. Conclusion
In this paper, we propose a novel Bayesian modelling frame-
work for GAN, with a likelihood function establishing a
connection to existing GAN models and a novel prior stabi-
lizing the inference process. We propose scalable Bayesian
inference algorithms which are asymptotically correct. As
future work, we plan to extend the proposed framework to
non-parametric Bayesian modelling and investigate more
theoretical properties of GANs in the Bayesian context.

Bayesian Modelling and Monte Carlo Inference for GAN

References
Arjovsky, Martin, Chintala, Soumith, and Bottou, Léon.

Wasserstein gan. arXiv preprint arXiv:1701.07875, 2017.

Arnold, Barry C and Press, S James. Compatible condi-
tional distributions. Journal of the American Statistical
Association, 84(405):152–156, 1989.

Arora, Sanjeev, Ge, Rong, Liang, Yingyu, Ma, Tengyu, and
Zhang, Yi. Generalization and equilibrium in generative
adversarial nets (gans). arXiv preprint arXiv:1703.00573,
2017.

Chen, Shyh-Huei and Ip, Edward H. Behaviour of the gibbs
sampler when conditional distributions are potentially
incompatible. Journal of statistical computation and
simulation, 85(16):3266–3275, 2015.

Chen, Tianqi, Fox, Emily, and Guestrin, Carlos. Stochas-
tic gradient hamiltonian monte carlo. In International
Conference on Machine Learning, pp. 1683–1691, 2014.

Ghosh, Arnab, Kulharia, Viveka, Namboodiri, Vinay, Torr,
Philip HS, and Dokania, Puneet K. Multi-agent di-
verse generative adversarial networks. arXiv preprint
arXiv:1704.02906, 2017.

Goodfellow, Ian. Nips 2016 tutorial: Generative adversarial
networks. arXiv preprint arXiv:1701.00160, 2016.

Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi, Xu,
Bing, Warde-Farley, David, Ozair, Sherjil, Courville,
Aaron, and Bengio, Yoshua. Generative adversarial nets.
In Advances in neural information processing systems,
pp. 2672–2680, 2014.

Hoang, Quan, Nguyen, Tu Dinh, Le, Trung, and Phung,
Dinh. Mgan: Training generative adversarial nets with
multiple generators, 2018.

Kingma, Diederik P and Ba, Jimmy. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Maas, Andrew L, Hannun, Awni Y, and Ng, Andrew Y.
Rectifier nonlinearities improve neural network acoustic
models. In Proc. icml, volume 30, pp. 3, 2013.

Mao, Xudong, Li, Qing, Xie, Haoran, Lau, Raymond YK,
Wang, Zhen, and Smolley, Stephen Paul. Least squares
generative adversarial networks. In 2017 IEEE Interna-
tional Conference on Computer Vision (ICCV), pp. 2813–
2821. IEEE, 2017.

Nowozin, Sebastian, Cseke, Botond, and Tomioka, Ryota.
f-gan: Training generative neural samplers using varia-
tional divergence minimization. In Advances in Neural
Information Processing Systems, pp. 271–279, 2016.

Saatci, Yunus and Wilson, Andrew G. Bayesian gan. In
Advances in neural information processing systems, pp.
3622–3631, 2017.

Tolstikhin, Ilya O, Gelly, Sylvain, Bousquet, Olivier, Simon-
Gabriel, Carl-Johann, and Schölkopf, Bernhard. Adagan:
Boosting generative models. In Advances in Neural In-
formation Processing Systems, pp. 5430–5439, 2017.

Wang, Yaxing, Zhang, Lichao, and van de Weijer, Joost.
Ensembles of generative adversarial networks. arXiv
preprint arXiv:1612.00991, 2016.

Bayesian Modelling and Monte Carlo Inference for GAN

6. Supplementary Materials
6.1. General Version of Theorem 1

In this section, we articulate a general version of Theorem 1 in the main paper. We consider a general GAN objective with
the form of Eqn. 19 and Eqn. 18.

Ld(θd; θg) = −Ex∼pdata
[φ1(D(x; θd)]− Ex∼pgen(·;θg)[φ2(D(x; θd))] (18)

Lg(θg; θd) = −Ex∼pgen(·;θg)[φ3(D(x; θd)] (19)

We can extend our conclusion in Theorem 1 to any GAN objective with a symmetry property over functions φ1 and φ2 as
shown in Eqn. 20. Note that all the common choices of GAN objectives including those listed in Table 1 satisfy this property.

∃c ∈ R,∀x ∈ R, φ1(x) ≡ φ2(c− x) (20)

Theorem 2. Assume the GAN objective used in Eqn. 6 holds the symmetry property (Eqn. 20). If there exists an optimal
generator distribution q∗g(θg) satisfying p∗model , Eθg∼q∗g [pgen(·; θg)] = pdata, then there exists a discriminator distribution
q∗d such that D∗(·) , Eθd∼q∗dD(·; θd) ≡ c

2 . Moreover, q∗g and q∗d are the fixed points of the iterative process defined in
Eqn. 6.

Proof. With Eqn. 21 and Eqn. 22 below, we prove that q∗d(θd) ∝ Ld(θd; p∗model) satisfies Eθd∼q∗dD(·; θd) ≡ c
2 . Note that,

in the following equations, S(θd) is the symmetric discriminator of θd defined as D(x;S(θd)) ≡ c−D(x; θd).

q∗d(θd) ∝ Ex∼pdata
[φ1(D(x; θd))] + Ex∼p∗model

[φ2(D(x; θd))]

= Ex∼pdata
[φ1(D(x; θd)) + φ2(D(x; θd))]

= Ex∼pdata
[φ2(c−D(x; θd)) + φ1(c−D(x; θd))]

= Ex∼pdata
[φ2(D(x;S(θd))) + φ1(D(x;S(θd)))]

⇒ q∗d(θd) = q∗d(S(θd)),

(21)

D∗(x) = Eθd∼q∗dD(x; θd) =

∫
θd∈Θd

q∗d(θd)D(x; θd)dθd

=
1

2
(

∫
θd∈Td

q∗d(θd)D(x; θd)dθd +

∫
θ′d=S(θd)∈Td

q∗d(θ′d)D(x; θ′d)dθ
′
d)

=
1

2

∫
θd∈Θd

q∗d(θd)(D(x; θd) +D(x;S(θd)))dθd

=
1

2

∫
θd∈Θd

q∗d(θd) · c · dθd =
c

2
.

(22)

Hence according Eqn. 23, we know Lg(θg;D∗) is a constant which leads to q∗g(θg) ∝ exp{−Lg(θg;D∗)} × q∗g(θg).

Lg(θg;D∗) = Ex∼pgen(·;θg)[φ3(D∗(x))] = φ3(
c

2
), ∀x ∈ X . (23)

Bayesian Modelling and Monte Carlo Inference for GAN

6.2. Visualization of Projected Hit Sets

GAN + GAN-NS

MGAN + GAN-NS

BGAN + GAN-NS

Ours-GMA + GAN-NS

Ours-PSA + GAN-NS

Figure 4. Visualization of the projected hit sets of different models trained with the GAN-NS objective. All the models succeed in
fitting each mode of true distribution with one of their generator. Specifically, three probabilistic models generate data almost perfectly
covering the ground-truth ‘squares’ while the optimization-based methods have difficulty covering the whole ‘squares’ and tend to yield
under-dispersed data distributions. Note that since the GAN-NS objective is not in a min-max style, the success of BGAN is expected.

Bayesian Modelling and Monte Carlo Inference for GAN

GAN + WGAN

MGAN + WGAN

BGAN + WGAN

Ours-GMA + WGAN

Ours-PSA + WGAN

Figure 5. Visualization of the projected hit sets of different models trained with the WGAN objective. As we can see, training the WGAN
objective leads to much worse performance for both optimization-based methods and BGAN. On the other hand, our methods are robust
to the choice of different GAN objectives and do not suffer from significant performance drop when using the WGAN objective.

Bayesian Modelling and Monte Carlo Inference for GAN

GAN + LSGAN

MGAN + LSGAN

BGAN + LSGAN

Ours-GMA + LSGAN

Ours-PSA + LSGAN

Figure 6. Visualization of the projected hit sets of different models trained with the LSGAN objective. Three probabilistic models performs
perfectly in this case, while both the two optimization-based methods miss one mode of the true distribution. This experiment illustrates
that although MGAN employs an additional classifier to force the data generated by different generators to be disjoint, it still suffers from
mode collapsing problem. This is because in MGAN, generators may still generate disjoint data samples in the same mode and fail in
capturing other modes.

