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Abstract

With the rise of telemedicine, the task of developing
Dialogue Systems for Medical Diagnosis (DSMD)
has received much attention in recent years. Dif-
ferent from early researches that needed to rely on
extra human resources and expertise to help con-
struct the system, recent researches focused on how
to build DSMD in a purely data-driven manner.
However, the previous data-driven DSMD meth-
ods largely overlooked the system interpretability,
which is critical for a medical application, and they
also suffered from the data sparsity issue at the same
time. In this paper, we explore how to bring inter-
pretability to data-driven DSMD. Specifically, we
propose a more interpretable decision process to
implement the dialogue manager of DSMD by rea-
sonably mimicking real doctors’ inquiry logics, and
we devise a model with highly transparent compo-
nents to conduct the inference. Moreover, we col-
lect a new DSMD dataset, which has a much larger
scale, more diverse patterns and is of higher qual-
ity than the existing ones. The experiments show
that our method obtains 7.7%, 10.0%, 3.0% abso-
lute improvement in diagnosis accuracy respectively
on three datasets, demonstrating the effectiveness
of its rational decision process and model design.
Our codes and the GMD-12 dataset are available at
https://github.com/lwgkzl/BR- Agent.

1 Introduction

Due to the widespread shortage of medical resources, mil-
lions of patients around the world are facing the delay of
disease diagnosis and therapy. To automate the process of
medical consultations and relieve the therapeutic stress, it has
been researched for decades on how to develop Dialogue Sys-
tems for Medical Diagnosis (DSMD). Typically, a DSMD
needs to keep inquiring about the patient’s symptoms in mul-
tiple turns until a preliminary diagnosis can be confidently
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rendered in the final turn. In this line of research, early
works needed to rely on extra human resources and expertise
to help construct the system, such as for feature engineer-
ing and rule designing [Shortliffe, 1974; Pople et al., 1975;
Milward and Beveridge, 2003]. It was not until 2018 that
Wei et al. [2018] proposed the first DSMD dataset collected
from an online healthcare community, and started the re-
search trend on developing DSMDs in a purely data-driven
manner that does not require any extra labour [Xu et al.,
2019; Xia et al., 2020; Liao et al., 2020; He et al., 2020;
Zhao et al., 2020; Liu et al., 2021; Liu et al., 2020;
Lin et al., 2021]. Before this dataset, previous researches
needed to simulate the patient’s situations to test the system
performance, rather than used data directly collected from the
cases of real patients.

However, despite avoiding the dependence on extra human
resources to construct the system, these data-driven methods
largely overlooked the system interpretability, which is critical
for a medical application. As shown in Fig. 1, a DSMD typi-
cally consists of three components and the Dialogue Manage-
ment (DM) module is the most central part. It is responsible
for selecting the next action for the system, either querying a
symptom or giving the final diagnosis. In other words, sup-
pose there are n types of symptoms and m types of diseases;
DM needs to conduct classification among the n+m possible
actions. In the previous researches on data-driven DSMD,
they implemented the DM with black-boxed neural networks
and directly generated the probability distribution of all the
n+m possible actions, i.e., conducting disease inference and
symptom selection simultaneously. Such a decision process
is very weakly interpretable and their model components also
lack enough transparency.

To the best of our knowledge, this is the first work that ex-
plores how to bring interpretability to data-driven DSMD.
It needs to be clarified that the interpretability we aim to
achieve here is to design an intrinsically interpretable method
for DSMD, rather than use some post-hoc methods to explain
a trained black-boxed model [Molnar, 2020]. To this end, we
propose a more interpretable two-stage decision process to
implement the DM of DSMD, by reasonably mimicking real
doctors’ consultation logics. We argue that it is more inter-
pretable to conduct disease inference and symptom selection
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successively, rather than simultaneously as in the previous re-
searches. Specifically, at each dialogue turn, the system should
first infer the patient’s possible diseases based on the current
symptom information. If the most suspected disease reaches a
confidence threshold, it would give the diagnosis result; oth-
erwise, it would further inquire a symptom according to the
disease estimation. It is just as in real consultation scenarios,
where a doctor would only inquire about a symptom due to
suspicion of particular diseases, rather than directly based on
the already-known symptoms. Moreover, for symptom selec-
tion, we also summarize that there are two kinds of selection
logics: a symptom is queried either to ensure the suspicion of
one disease or to distinguish similar diseases.

Correspondingly, we propose a model with highly trans-
parent components to conduct the above decision process,
named Bayesian Reinforced Agent (BR-Agent). It includes a
BayesNet for disease inference and two matrices that respec-
tively mimic two kinds of symptom selection logics, which are
controlled by a logic switcher. Their parameters are all practi-
cally meaningful. For instance, the parameter in the BayesNet
is either the prior probability of a disease or the conditional
probability of a symptom given diseases.

For the lack of turn-level supervision labels, BR-Agent
is optimized via long-term reinforced rewards that consider
symptom recall and diagnosis accuracy. The BayesNet in BR-
Agent is also trained end to end with the other components
via the gradient from RL, which is different from the learning
paradigm of other BayesNet applications in the medical field.
In the previous researches, the BayesNet parameters were
usually determined with the help of expert knowledge or us-
ing statistical estimation methods [Lincoln and Parker, 1967;
Kahn Jr et al., 1997; Wang et al., 1999; McGeachie et al.,
2009; Flores et al., 2011]. Even when combining BayesNets
with other neural networks in a deep learning fashion, the
parameters of BayesNets were also learned separately us-
ing more traditional methods, rather than trained end to end
with the other components as we do [Chen er al., 2020;
Kim et al., 2021]. For instance, Chen et al. [2020] imple-
mented a BayesNet in combination with hierarchical CNNs.
They used the gradient mechanism to train the CNN part, while
the BayesNet parameters were just estimated by counting the
feature occurrences in the dataset.

Our proposed method is not only interpretable, but it also
demonstrates very competitive performance due to its rational
decision process and model design. It exceeds the previous
state-of-the-art by a large margin in diagnosis accuracy,
with an absolute improvement of 7.7%, 3.0%, 10.0% respec-
tively on three datasets. Since the existing DSMD data is still
very limited, we also collect a new dataset, GMD-12, which
has a larger scale, more diverse patterns, and is of higher qual-
ity than the previous datasets. Its scale is more than three
times of the existing datasets in terms of dialogue number.
The number of disease and symptom types in GMD-12 are
also much more diverse, so new patterns can be observed from
it. Moreover, our data is obtained from collaborating hospitals
and revised by clinical experts, while the previous datasets
were directly crawled from telemedicine websites, so GMD-12
is more professional and of higher quality.
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Figure 1: DSMD components and their functions.

2 Preliminaries

As shown in Fig. 1, a DSMD typically consists of a Natural
Language Understanding (NLU) module, a DM module, and
a Natural Language Generation (NLG) module. At each turn,
based on the currently-known symptoms extracted through
NLU, DM either chooses a disease as the diagnosis result
and finishes the dialogue, or selects one more symptom to
query. The output of DM is then transformed into natural
language through NLG. Our work, as well as the previous
DSMD researches, only focus on developing the DM part,
because, for privacy issues, the released versions of DSMD
datasets do not contain the original dialogue content between
patients and doctors. They only contain processed structured
data to test DM alone, with no need for NLU or NLG. Besides,
the construction of NLU and NLG is relatively simple. For
instance, NLU can be addressed by designing a set of regular
expressions, as patients’ expression patterns of the symptoms
are relatively fixed; NLG can be implemented with template-
based methods, since language diversity and vividness are less
important in DSMD.

The task of DM in DSMD can be formally defined as be-
low. Suppose there are IV types of symptoms and M types
of diseases. The input of DM at the ¢-th turn is s; € RN,
which represents the system’s current knowledge of the pa-
tient’s symptoms. Each dimension of s; corresponds to one
symptom and takes value from {1, —1, 0}, respectively stand-
ing for positive, negative, and uncertain. Given s;, DM either
selects one more symptom to query, or chooses a disease as
the diagnosis result. Thus, there are overall N + M possible
actions to choose from.

3 Methodology

Fig. 2 presents an overview of our proposed dialogue manager
for DSMD, named BR-Agent. At the ¢-th turn, given symptom
information s;, a BayesNet is first adopted to infer the patient’s
disease Pp. If the probability of the most suspected disease
(i.e., the maximum value in Pp) is larger than the threshold
€4 or t reaches the maximum turn number 7, .., DM would
generate the diagnosis result. Otherwise, we would further
predict which symptom most needed to query in the next
response Pg, using a neural logic switcher and two matrices
that simulate two different inquiry logics. Below we will
more detailedly describe the two parts of BR-Agent, disease
inference and symptom inquiry. Then, we will illustrate how
we train BR-Agent with reinforcement learning.
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Figure 2: Overview of our proposed dialogue manager for DSMD.

3.1 Disease Inference

The structure of the BayesNet in BR-Agent models the re-
lationship between diseases and symptoms by a directional
bipartite graph G=(V,£). The node set V consists of dis-
ease nodes D={D;|i = 1,2,...,M} and symptom nodes
S={S;|lj = 1,2,...,N}. The edge set £ is constructed by
counting co-occurrence times of each disease-symptom pair
in the corpus. Concretely, the disease node D; points to the
symptom node S; if the co-occurrence number of D; and S;
is greater than a given threshold .. The parent set of .S; (the
set of all nodes pointing to S;) is denoted as Parents(S;),
which represents all possible diseases causing this symptom.

For parameter learning, we first initialize the BayesNet pa-
rameters by referring to the Bayesian parameter estimation
method in [Chen et al., 2020], and then fine-tune them during
the end-to-end RL training with other components. Specifi-
cally, there are two types of parameters in our BayesNet O .
One is P(D;), the prior probability of disease D; (i = 1,
2,.., M). It is initialized with the prevalence of the disease
in the dataset. The other is the probability of a symptom
conditioned on related diseases P(S;|D;", D;"), where D}
is the set of diseases that the patient has and D, is the one
that he/she does not have; they satisfy that Parents(.S;) is
their disjoint union, i.e., Parents(S;) = D;” LU D; . In our
experimental datasets, the diagnosis of a patient only consists
of one disease, and we assume that the patient does not have
any other unmentioned diseases. Thus, if | D;"| = 1 only has
one element, we can estimate this probability based on the co-
occurrence relationship of the symptom and the disease. For
the other cases, we initialize them with 0.5 as a random guess.
Specifically, the initial value of parameter P(S;|D;", D;") is
calculated as:

1p+ p-y = | n(8i. DH)/n(DF) i |Df| =1

P(8i|D;, D7) = { 0.5 ' " else.
where n(D;") is the number of patients in the dataset who
has the disease in D;"; n(S;, D;") is the number of dialogues
where the patient has symptom S;, the disease in D;" and does
not have diseases D, .

After initialization, all the BayesNet parameters 6y will
be further fine-tuned during the end-to-end training with
other DM components. Given the BayesNet and a set of
observed positive symptoms ST and negative symptoms S~
derived from s;, we adopt the Variable Elimination (VE) al-
gorithm [Zhang and Poole, 1994] to calculate the disease
distribution Pp = P(D|S*,57) = VE(ST,57;60pn). Es-
sentially, given the observed symptoms, VE marginalizes out
the unobserved symptoms S* = S\ (ST U S™), and com-
putes the disease distribution Pp conditioned on the observed
symptoms. Since the calculation process of VE is differen-
tiable, the BayesNet parameters 8 can be updated using
the gradient on Pp during the end-to-end training with other
model components in dialogue management. More details on
the RL training process is provided in § 3.3.

3.2 Symptom Selection

For symptom selection, we utilize two matrices to simulate
two types of human doctors’ inquiry logic: a conditional prob-
ability matrix M, € RM*YNto ensure suspicion of a specific
disease, and the mutual information matrix M,,, € RM*N
to distinguish two similar diseases. The element M, (i, j) in
the conditional probability matrix indicates the probability of
symptom S; given the presence of disease D;:

M,(i,) = P(S,|D;) = — 2 P0i)

k=1 D, Sk)
where n(i, 7) is the number of dialogues where the patient has
symptom S; and disease D;.

The element M, (i, ) in the mutual information matrix
measures the mutual information between disease D; and
symptom S;. Specifically, it is calculated as

M, (i,5) = I(Ds; Sj) = ZZP(Di =k1,8; = ko)
kr ks

" ( P(D; = k1, S; = k) )
S\PD; =k)P(S; = ks) )

where k; and &, are the sets of possible values for disease D;
and symptom S, respectively. In our case, k1, k2 € {0,1},
where 0 represents negative and 1 positive.

The condition probability matrix tends to query high-
frequent symptoms that co-occur with suspected diseases.
However, some symptoms can be common for many diseases,
such as the symptom “fever”, and thus cannot be used to dis-
tinguish them. On the other hand, the mutual information
measures the connection between D; and S, which indicates
whether S; can be used to distinguish D; from other diseases,
so it can query a low-frequent symptom as long as it has a
stronger connection with the suspected disease than others.
Both matrices are normalized along the row axis.

To determine which symptom inquiry logic is more suitable
for the current turn, we adopt the Multi-Layer Perceptron
(MLP) to determine a weight factor p € [0, 1] to infuse the
prediction results from two matrices. Specifically, ;o and Pg
are calculated as:

p = Sigmoid(MLP(s;; Pp)),
PS :,[LPD ~MC+ (1 —,LL)PD Mm




3.3 RL Training Framework

Our model is trained end to end with reinforcement learning,
using the Advantage Actor Critic (A2C) algorithm [Mnih et
al., 2016]. The A2C algorithm includes an actor to generate
actions, an environment to update the current state based on
the action and generate rewards, and a critic that learns a value
function to evaluate the quality of the current state through
the given reward. This value function is leveraged to train
the actor by estimating the “advantage”, that is, the difference
between the estimated reward and the actual reward received
after action a;. In our work, the state corresponds to s;, the
current knowledge of symptom information, and the actor is
just our dialogue manager. The environment is a user simulator.
It has access to all the patient’s symptom information from
the dataset, so it could answer the DM’s symptom inquiry by
updating the state. To train the critic, it gives rewards to correct
diagnosis results and penalties to mistaken diagnosis and the
symptom inquiries that get negative answers. For the critic,
we implement a multi-layer perceptron to calculate the value
function v(s;8,), and the advantage is measured with the
temporal difference error §; = r¢ + Yv(S¢11; 0y) — v(st; 0y),
where -y is a hyper-parameter, denoting the discount rate. The
parameters of the actor 8, and the critic 8,, are updated by:

0. < 0.+ 516 - Vo, Inm(a]ss; 0;)
+ B2 - H(m(at|st; 0x)
0, 0,4+ a5 Vo,u(st;0,),

where (1, S2 and « are hyper-parameters and H(-) is an en-
tropy regularization term to encourage policy exploration. In
this way, the parameters of the BayesNet in the actor are also
fine-tuned end to end with other components.

4 Dataset Construction

Before this work, there are two public DSMD datasets,
Muzhi [Wei et al., 2018] and Dxy [Xu et al., 2019]. As shown
in Table 1, the scales of the two public datasets are relatively
small. Muzhi contains 710 dialogues, 4 pediatric diseases
and 66 symptoms, while Dxy contains 527 medical diagnosis
dialogues, 5 diseases and 41 symptoms. Both of them directly
crawled the data from online healthcare communities.

To alleviate the data sparsity issue for DSMD, we further
collect a new dataset, named GMD-12. We use the medical
records from several collaborating hospitals as the data source.
The hospitals had already asked the related patients’ permis-
sion to use their medical records for academic research, with
signature confirmation. These offline records are of higher
quality than the data directly crawled from the online commu-
nities, as they are guaranteed to be real patients’ cases given
diagnosis by professional doctors.

We were first given access to 17,000 medical records, from
which we selected the 12 most frequent diseases to include
in the dataset. The 118 symptoms were determined accord-
ingly with the help of collaborating clinicians. Then, we
extract the symptom and disease information from the col-
lected records, using an enterprise-level medical entity extrac-
tion system trained on a large-scale electronic health record
corpus. After that, all the extracted symptom and disease

Dataset Dxy Muzhi GMD-12 (Ours)
# Dialogues 527 710 2,374

# Disease Types 5 4 12

# Symptom Types 41 66 118

# Avg. Symptoms/Patient | 4.74 5.59 5.55
Rationality Score 1.54 1.60 1.65

Table 1: Statistics of three DSMD datasets. “Avg. Symptoms/Patient”
represents the average number of symptoms that one patient has in the
dataset. “Rationality Score” represents the professional evaluation of
the data quality (on a 0-2 scale; 2 for the best).

were manually normalized to its corresponding terminology
on SNOMED CT! and checked by three domain experts.

As shown in Table 1, besides the larger sample size, our
GMD-12 also has more diverse diseases and symptom types,
so new patterns can be observed from it. To evaluate the data
quality of the three datasets, three doctors with more than two-
year consultation experience are asked to assess the rationality
score of 200 samples from each dataset. The rationality score
is rated on a 0-2 scale (2 for the best), representing whether
the listed symptoms in the given sample can support its diag-
nosis result. We can see from Table 1 that GMD-12 achieves
the highest rationality score, demonstrating that it has better
quality from the professional perspective.

5 Experiments

5.1 Experimental Setup

Our experiments are conducted on two public datasets, Muzhi
and Dxy, and our newly-constructed GMD-12 dataset. Each
sample contains simplified structured data, including the pa-
tient’s disease and his/her symptoms, with no need of NLU
and NLG. The symptoms are labelled as either “explicit” or
“implicit”. The explicit ones are fed to the DM in the first dia-
logue turn, and the implicit ones can be quried in the following
turns. A user simulator that has access to all the symptom in-
formation is implemented to interact with the DM and answer
its symptom inquiry.

5.2 Automatic Evaluation

Our automatic metrics include diagnosis accuracy and symp-
tom recall. Diagnosis accuracy is the main focus of the DSMD
task, i.e., correctly diagnosing the disease. Symptom recall
is the average proportion of the patient’s symptoms that are
successfully queried by the dialogue agent. It measures the
agent’s efficiency in collecting patients’ information.

Comparison with Baselines. The compared baselines are
as follows. Basic DQN [Wei et al., 2018] applies RL to
DSMD with a deep Q-network. A2C-GCN [Kipf and Welling,
2017] adopts the A2C algorithm similar to our method, but its
actor is implemented with Graph Convolutional Networks
(GCN). Sequicity [Lei er al., 2018] uses the sequence-to-
sequence architecture for task-oriented dialogue systems, op-
timized with RL. KR-DS [Xu et al., 2019] and GAMP [Xia
et al., 2020] are two state-of-the-art models for DSMD. The
evaluation results are presented in Table 2.

'https://www.snomed.org/snomed-ct



Dxy Muzhi GMD-12
R Acc. Rec. Acc. Rec. Acc. Rec.
Basic DQN | 0.731 0.245 | 0.65 0.04 0.62 0.05
A2C-GCN 0.740 0.169 | 0.69 0.09 0.72 0.36
Sequicity 0.285 0.246 - - - -
KR-DS 0.740 0.342 | 0.73 0.13 0.69 0.21
GAMP 0.769 0.170 | 0.73 - - -
BR-Agent 0.846 0.486 | 0.76 0.670 | 0.82 0.50

Table 2: The diagnosis accuracy and symptom recall of BR-Agent
and other baselines on the Dxy, Muzhi, and GMD-12 datasets.

Dxy Muzhi GMD-12
Methods Acc. Rec. Acc. Rec. | Acc. Rec.
BR-Agent 0.846 0.486 | 0.76 0.67 | 0.82 0.50
w/0 mutual. 0.837 0382 | 075 0.70 | 0.81 0.44
w/o cond. 0.817 0437 | 0.74 0.57 | 0.80 043
w/0 matrices 0.760 0284 | 0.73 0.29 | 0.74 0.17
w/o BayesNet | 0.721 0.161 | 0.67 0.06 | 0.65 0.22

Table 3: Ablation study of BR-Agent, including the results of remov-
ing the mutual information matrix, the conditional probability matrix,
both matrices, and the BayesNet.

We can see that BR-Agent obtains 8%, 3%, 10% absolute
improvement in diagnosis accuracy and 14%, 54%, 14% im-
provement in symptom recall respectively on the Dxy, Muzhi,
and GMD-12 datasets. It indicates that BR-Agent reasonably
models the human doctors’ inquiry logics and can more pre-
cisely conduct disease diagnosis by collecting more effective
symptoms. The improvement of diagnosis accuracy on GMD-
12 is the largest, verifying better scalability of BR-Agent for
larger datasets. On the Muzhi dataset, though BR-Agent can
effectively recall more symptoms, the improvement of diagno-
sis accuracy is still relatively small. It is probably because the
diseases in Muzhi are very similar and difficult to distinguish
(e.g., children’s bronchitis and infantile diarrhoea).

Ablation Studies. We also conduct ablation studies to test
the effectiveness of each component. The results are shown in
Table 3. We first analyze the effectiveness of the two matrices
used to model different symptom inquiry logics. Specifically,
we conduct the experiments of removing one of them respec-
tively and replacing them both with an MLP. Then, we further
ablate the BayesNet used for disease inference, and the DM
module degenerates to a 3-layer MLP that learns with the A2C
algorithm. The results of ablation study are presented in the
last line of Table 3. We can see that the ablation of every
component can all cause a drop in the overall performance,
demonstrating the indispensability of each part.

5.3 Analysis of Interpretability

During applications, one can easily analyze how BR-Agent
arrives at the decision of each turn. For instance, we could
explain why it queries a particular symptom by investigating
its disease estimation at that turn from the BayesNet and its
major inquiry logic (to ensure/distinguish) determined by the
logic switcher. Besides, the parameters of the BayesNet and
two transition matrices are all practically meaningful, such as

Methods Inquiry K Diagnosis K

Transparent-A2C 2.35 0.82 2.78 0.69
Retrieval 2.52 0.70 1.22 0.80
BR-Agent 4.30 0.78 4.39 0.75

Table 4: Human evaluation results of whether the model’s symptom
inquiry and the diagnosis actions are rational from professional per-
spectives, along with the Cohen’s kappa between two annotators (on
a 1-5 scale; 5 for the best).

Conditional Probability Matrix -
P(Fever|HFMD) =0.23 P(Cough|URI)=0.22
P(Rash|HFMD) =0.22 P(R.Nose|URI)=0.16

P(Herpes|HFMD)=0.17  P(Fever|URI) =0.12

Inquire & Confirm
(Herpes)

pn=203

S, d Di

Suspected Diseases
P(HFMD) =0.54
P(URI) =037
P(Pneumonia)- 0.08

Mutual Information Matrix
|(Herpes,HFMD) =0.24 ' |(Cough, URI) =0.23
I(Rash,HFMD) =0.18 I(R.Nose,URI) =0.12

P(HFMD) =0.96
P(URI) =0.02
P(Pneumonia)= 0.01

Figure 3: The conditional probability matrix tends to inquire high-
frequent symptoms, while the mutual information matrix can consider
a low-frequent symptom, as long as it has a strong connection with a
particular disease than the others.

referring to the prior probability of a disease or the conditional
probability of a symptom given diseases. We could easily look
into these values to analyze the model’s estimation of them
and see whether they are consistent with the clinical guideline.
Detailed examples and analyses are provided below.

Case Study of the Decision Process. We first present a case
study to show how we can utilize the transparency of BR-
Agent to analyze how it arrives at a particular action. Fig. 4
presents a case study of the BR-Agent’s decision process in
two dialogue turns. We can see that during symptom inquiry,
the weight ;1 produced by the logic switcher is equal to 0.7,
indicating that the conditional probability matrix dominates
the current inquiry logic. To ensure its suspicion of the disease
pneumonia, BR-Agent queries its typical symptom lung rales.
After this turn of inquiry, its estimation of the probability of
pneumonia increases from 0.49 to 0.97, leading to the final
diagnosis. As shown by the diagnosis report in the bottom-
right corner of Fig. 4, the confidence level of the diagnosed
disease pneumonia is 97%, which is derived from the disease
distribution in the final turn; the supporting symptoms for its
diagnosis are the ones that are successfully queried (repre-
sented as orange nodes in the figure) and connected to the
disease node pneumonia in the BayesNet at the same time.

Human Evaluation of the Decision Process. Then, we fur-
ther analyze whether the inference process of BR-Agent is
rational from the professional perspective. To this end, we
invite two clinical experts to conduct the evaluation. For a
symptom inquiry action, they score whether it is rational to
query the symptom based on its current disease estimation and
whether its inquiry logic (to ensure/distinguish) is reasonable.
For a diagnosis action, they evaluate whether it is reasonable
to diagnose a disease based on its already-known symptom
information. The score is given on a 5-point Likert scale (5 for
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Figure 4: Case study of the model parameters and its decision process in two dialogue turns.

the best). As the existing DSMD methods are not transparent
enough to conduct a similar analysis, we design two baselines
by ourselves for comparison, which are Transparent-A2C and
a retrieval-based method. Transparent-A2C is a transparent
variant of A2C-GCN, while the retrieval-based method can
explain the model’s action by retrieving and analyzing the
most similar sample in the dataset.

The average rationality scores and the Cohen’s kappa be-
tween annotators are listed in Table 4. We can see that BR-
Agent obtains remarkably high rationality scores, 4.30 for
the symptom inquiry action and 4.39 for the diagnosis action,
while all the scores of the two baselines are no more than 3
points. It demonstrates that the actions of BR-Agent are very
rational from the professional perspective, as it reasonably
mimics real doctors’ inquiry logics. The Cohen’s kappa are
all between 0.69 and 0.82, indicating strong inter-annotator
agreement.

Analysis of the Neural Logic Switcher and Two Matrices.
To more clearly illustrate the different symptom inquiry logics
of the two matrices in BR-Agent, we present a case study in
Fig. 3. Before that turn of symptom inquiry, the system has
high suspicion of Hand-Foot-and-Mouth Disease (HFMD) and
Upper Respiratory Infection (URI). We can see that the con-
ditional probability matrix tends to inquire the high-frequent
symptom “fever”. However, “fever” is a common symptom
for both HFMD and URI, so querying “fever” would not be
able to confirm any one of them. On the other hand, the mutual
information is able to consider the comparatively low-frequent
symptom “herpes”, as it is a typical symptom of HFMD and
can be used to effectively distinguish the two diseases. In this
example, the neural logic switcher generates the p = 0.3, 2
choosing the mutual information as the more dominant logic.
As aresult, the system inquires “herpes”. After confirming this
symptom, the system effectively arrives at the diagnosis result
of HFMD with the confidence level of 96%. By analyzing the
distribution of weight 1 generated by the neural logic switcher

Note that the lower value of y indicates stronger dominance of
the mutual information matrix in the overall symptom inquiry logic.

in the datasets, we find that the average value of p is 0.44, and
the mutual information matrix is more frequently chosen as
the dominant inquiry logic.

Analysis of Parameter Transparency. Some of the param-
eters in the BayesNet and the two transition matrices are listed
in Fig. 3 and Fig. 4. These parameters are all practically
meaningful. For instance, we can see that the occurrence of
disease pneumonia in Fig. 4 strongly affects the distribution of
symptom [ung rales, which is in accordance with the clinical
guideline. However, we also find that many of the Bayesian
parameters stays near the value of 0.5, which is the value we
use to initialize the parameters that cannot be more estimated
based on the dataset (see § 3.1). It is probably because the
datasets are too small to fine-tune all the parameters.

6 Conclusion

In this paper, we made an initial attempt towards the inter-
pretable data-driven DSMD. To this end, we proposed a novel
method to realize the DM of DSMD with interpretable de-
cision process and transparant components. It consists of a
BayesNet for disease inference and two matrices to simulate
human doctors’ symptom inquiry logics, controlled by a neu-
ral logic switcher. We also constructed a large DSMD dataset
to alleviate the data sparsity issue. Empirical results showed
that our method exceeded the previous state-of-the-art by a
large margin in both diagnosis accuracy and symptom recall.
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