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Abstract
Multimodal Large Language Models (MLLMs)
have shown significant promise in various ap-
plications, leading to broad interest from re-
searchers and practitioners alike. However, a
comprehensive evaluation of their long-context
capabilities remains underexplored. To ad-
dress these gaps, we introduce the MultiModal
Needle-in-a-haystack (MMNeedle) benchmark,
specifically designed to assess the long-context
capabilities of MLLMs. Besides multi-image
input, we employ image stitching to further in-
crease the input context length, and develop a
protocol to automatically generate labels for
sub-image level retrieval. Essentially, MM-
Needle evaluates MLLMs by stress-testing
their capability to locate a target sub-image
(needle) within a set of images (haystack)
based on textual instructions and descriptions
of image contents. This setup necessitates
an advanced understanding of extensive vi-
sual contexts and effective information re-
trieval within long-context image inputs. With
this benchmark, we evaluate state-of-the-art
MLLMs, encompassing both API-based and
open-source models. The findings reveal that
GPT-4o consistently surpasses other models
in long-context scenarios, but suffers from
hallucination problems in negative samples,
i.e., when needles are not in the haystacks.
Our comprehensive long-context evaluation of
MLLMs also sheds lights on the considerable
performance gap between API-based and open-
source models. All the code, data, and instruc-
tions required to reproduce the main results
are available at https://github.com/Wang-ML-
Lab/multimodal-needle-in-a-haystack.

1 Introduction

Recent breakthroughs in multimodal large lan-
guage models (MLLMs) have enabled a wide range
of applications, spanning from visual question an-
swering to cross-modal retrieval (Yue et al., 2023;
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Ying et al., 2024). To evaluate the capabilities and
limitations of MLLMs, various benchmarks have
been proposed, focusing on challenges such as rea-
soning (Yue et al., 2023; Padlewski et al., 2024; Lu
et al., 2023), perception (Fu et al., 2024b; Yu et al.,
2023), and hallucination (Guan et al., 2023).

Despite significant progress, the evaluation of
MLLMs for long-context understanding has been
lagging. Current evaluation methods and bench-
marks (Yue et al., 2023; Ying et al., 2024; Liu et al.,
2023; Padlewski et al., 2024; Fu et al., 2024b; Yu
et al., 2023; Chen et al., 2024; Fu et al., 2024a;
Lu et al., 2023; Reid et al., 2024) either (1) as-
sume the use of single or limited images as inputs,
failing to stress-test MLLMs’ long-context capa-
bilities or (2) only contain a limited numbers of
data points (referred to as “samples” in this paper),
lacking in statistical significance and therefore of-
ten rendering the evaluation inconclusive. These
gaps limit the development of MLLMs capable of
effectively handling long-context hybrid-modality
inputs, which is crucial for broader applications.

To bridge this gap, we introduce the MultiModal
Needle-in-a-haystack (MMNeedle) benchmark to
comprehensively evaluate the long-context capa-
bilities of MLLMs. Fig. 1 shows a simple exam-
ple: The MLLMs are presented with a haystack
of images, consisting of M = 10 images, each
containing N ×N = 2 × 2 = 4 sub-images (see
Figure 1(b)). Additionally, a caption is provided for
one of the sub-images in the haystack, as shown in
green text in Figure 1(c). The goal of the MLLMs
is to identify the needle, namely the sub-image
highlighted in the green box in Figure 1(a), which
corresponds to the caption.

By using advanced techniques, such as image
stitching to increase input context length, we assess
MLLMs’ ability to locate a target sub-image (nee-
dle) within a large set of images (haystack) based
on textual instructions, i.e., instructions with the
target caption in Fig. 1(c). The highlights of our
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Given 10 images indexed from 1 to 10, 
each divided into 2*2 sub-images, 
identify the sub-image that best 
matches the provided caption. 
Respond with "index, row, column" 
and nothing else …

Caption: A woman walking across a 
sandy beach holding a little kite.

Claude 3 Opus: 9, 2, 2 ❌

Gemini Pro 1.0: 10, 2, 4 ❌

Gemini Pro 1.5: 5, 2, 1 ❌

GPT-4V: 6, 2, 2 ❌

GPT-4o: 5, 2, 2
Fuyu-8B: Index:1. Row:2. Column: 3. ❌
mPLUG-Owl-v2: -4, 6 ❌

IDEFICS2-8B: \n\n\n\n\n ❌

LLaVA-Llama-3: \n===== ❌

…

(c) Text Inputs(b)Haystack Image Inputs (d) LLMOutputs(a)Needle Sub-Image

Image 1 Image 10

Sub-Images
37, 38, 39, 40

Image 5

Sub-Images
17,18,19, 20

Sub-Images 
1, 2, 3, 4

…

Figure 1: MMNeedle evaluation overview. Correct answers are marked with checkmark (✓), while the incorrect
answers are marked with cross (×). Our evaluation setup involves the following key components: (a) Needle
Sub-Image: The needle sub-image to be retrieved based on the given caption. (b) Haystack Image Inputs:
The long-context visual inputs consist of M images, each stitched from N × N sub-images. (c) Text Inputs
(Instructions and Caption): Detailed instructions to MLLMs, followed by a caption describing the needle, i.e.,
sub-image 20. See Sec. A for MMNeedle’s complete instructions. (d) LLM Outputs: The answers from different
MLLMs, indicating their ability to accurately locate the needle in the haystack based on the given caption. The
expected output is composed of the model’s identification of the index, row, and column of the matching sub-image.
The results showcase the comparative performance of various models: GPT-4o correctly predicts the exact location
of the needle; Gemini Pro 1.5 only correctly predicts the image index of the needle; other API models predict
incorrect locations; open-source models often output with wrong formats.

MMNeedle benchmark include:

• Comprehensive Dataset. Our dataset ensures
sufficient samples for each setting, with a total
number of 40,000 images, 560,000 captions,
and 280,000 needle-haystack pairs.

• Diverse Settings. Our benchmark covers di-
verse settings with varying context lengths, sin-
gle and multiple needles, as well as positive
and negative samples, among others (details
in Sec. 3).

• Coarse-to-Fine Evaluation Metrics. We es-
tablish a set of evaluation metrics, includ-
ing “existence accuracy”, “index accuracy”,
and “exact accuracy”, to holistically evaluate
MLLM at the sequence-, image-, and sub-
image- levels (details in Sec. 3.4).

• Wide Coverage. Our evaluation covers both
state-of-the-art API-based and state-of-the-art
open-source MLLMs, shedding light on their
long-context capabilities.

Our findings underscore a considerable perfor-
mance gap between models and reveal the hal-
lucination problem in state-of-the-art MLLMs
through negative samples. For example, we find
that (1) there is still a large performance gap be-
tween state-of-the-art API-based and state-of-the-
art open-source models, (2) accuracy drops signifi-
cantly with more images in the haystacks, even
for state-of-the-art API-based MLLMs such as
Claude 3 Opus and Gemini 1.0 Pro, and (3) all
models (including Claude 3 Opus, Gemini 1.5 Pro,
and GPT-4V) perform poorly in MMNeedle set-
tings with sub-images (e.g., N ×N = 2× 2 = 4
sub-images in Fig. 1); this is true even for the

best model, GPT-4o, whose accuracy drops from
97.00% for M = 10 images without sub-images
(i.e., equivalent to 10 images in the haystack) to
26.90% for M = 10 images with N×N = 4×4 =
16 sub-images for each image (equivalent to 160
images in the haystack). See Fig. 2 and more re-
sults in Sec. 4.

2 Related Work

Existing benchmarks for MLLMs mainly focus on
limited image inputs, such as reasoning (Yue et al.,
2023; Padlewski et al., 2024; Lu et al., 2023; Song
et al., 2024), perception (Fu et al., 2024b; Yu et al.,
2023), hallucination (Guan et al., 2023), where the
answers are based on either single or only a hand-
ful of images. They are therefore not suitable for
evaluating MLLMs’ long-context capability for vi-
sual inputs. Recent work (Fu et al., 2024c; Kuratov
et al., 2024; Levy et al., 2024; Zhao et al., 2024) on
LLMs employs the needle-in-a-haystack test (Kam-
radt, 2023) to evaluate the long-context capability
of large language models (LLMs), where the LLM
is expected to answer the question by finding the
corresponding information among a long irrele-
vant corpus as context. However, these datasets
and benchmarks are not applicable for the mul-
timodal setting. Google’s technical report (Reid
et al., 2024) has showcased Gemini 1.5 Pro’s ca-
pability of finding the needle in an audio or video
haystack. However, its evaluation (1) involves only
one single sample rather than a complete dataset,
obviously lacking statistical significance and there-



fore rendering the evaluation inconclusive 1, and
(2) does not involve a large set of unrelated images,
which is the focus of MMNeedle. There is also
work on the retrieval capability of small objects in
a single large image (Pawlowski et al., 2019) or re-
trieval from large external image datasets (Brogan
et al., 2019), but none of them are concerned with
in-context image retrieval, particularly for long-
context multimodal evaluation.

In contrast to existing benchmarks, our MMNee-
dle benchmark includes a dataset of 40,000 images,
560,000 captions, and 280,000 needle-haystack
pairs (more details in Sec. 3), rather than only one
(or a handful of) needle-haystack pair(s) (Kamradt,
2023; Reid et al., 2024). MMNeedle also includes
a diverse set of metrics and evaluation protocols,
covering different numbers of needle sub-images
and needle sub-images. These differences set MM-
Needle apart from existing benchmarks and are
essential to evaluate MLLMs’ long-context capa-
bility comprehensively.

3 MultiModal Needle in a Haystack
(MMNeedle)

In this section, we introduce our MultiModal
Needle-in-a-haystack (MMNeedle) benchmark.

3.1 Overview
Problem Setting. Fig. 1 provides an overview
of our evaluation setup with a randomly selected
example from our MMNeedle dataset (details
in Sec. 3.2). The MLLM is given (1) an image
haystack, i.e., a sequence of M images, (M = 10
in Fig. 1), with each image containing N ×N sub-
images (N = 2 in Fig. 1), and (2) a caption for one
of the sub-images, shown as green text in Fig. 1(c).
The MLLM’s goal is then prompted to find the nee-
dle, i.e., the sub-image which the caption describes.
Note that our evaluation setup can be naturally ap-
plied for video-based inputs by extracting images
from individual frames, which would be interesting
future work.

Evaluation Goals. As illustrated in Fig. 1, our
MMNeedle aims to evaluate the MLLMs’ three
key capabilities within one forward pass: (1) un-
derstanding the semantics of both visual and tex-
tual inputs, (2) retrieving the sub-image (needle)
from long-context images (haystack), and (3) un-
derstanding and following the instructions (Xia

1Our MMNeedle results show that Gemini 1.5 Pro’s per-
formance does drop a lot with long contexts, especially with
multiple sub-images in the same image.

Table 1: Maximum numbers of images per request
for Azure GPT-4V/o , OpenAI GPT-4V/o, Claude, and
Gemini. "*" indicates that the OpenAI GPT-4V/o API
supports at most 10 images with high quality. Other
numbers are hard limits. See Appendix A for details.

Model GPT-4 (Az.) GPT-4 (Op.) Claude Gemini

Limit 10 10∗ 20 16

et al., 2024) to output the location of the sub-image
(needle) in the correct format.

3.2 MMNeedle Dataset

Constructing Long Context. To evaluate the long-
context capability of MLLMs, we extend the con-
text length of visual inputs in the following two
aspects:

• More Images: We increase the number of im-
ages in the inputs for MLLMs to extend the
visual context length. Specifically, we use two
different numbers of images M in the prompt,
i.e., M = 1 or M = 10. Note that we choose
M = 10 because it is the largest number
of input images that GPT-4V/GPT-4o can
support (see Table 1 and Appendix A).

• Image Stitching: We stitch small images into
a single large image as the input. Specifically,
we use N ×N sub-images (N ∈ {1, 2, 4, 8})
to compose a stitched image with N rows and
N columns, each combination of row and col-
umn indices (r,c) corresponding to a sub-image.
Fig. 1(b) shows an example of 2× 2 stitching,
with 4 sub-images in 1 stitched image.

Purpose of Image Stitching. The purpose of im-
age stitching is to: (1) Extend the effective context
length. For example, stitching M = 10 images,
each with N × N = 8 × 8 sub-images, results
in a long context of 640 sub-images. This setup
tests MLLMs’ long-context capabilities. (2) Test
MLLMs’ localization capability by requiring them
to pinpoint sub-images within a large image based
on specific captions. For details, see Appendix A.

Combining both dimensions provides compre-
hensive settings for our evaluation: (M,N) =
(1, 2), (1, 4), (1, 8), (10, 1), (10, 2), (10, 4), (10, 8).
Note that (M,N) = (1, 1) is excluded, as finding
an image within a single image is trivial. Note
that MMNeedle covers typical, real-world MLLM
use-cases. Specifically, single, complete images
correspond to our setting with the number of
images M = 10 and the stitch size N×N = 1×1.

Single-Needle Setting, Multi-Needle Setting,
and the Number of Needles K. We also extend



the single-needle setting above, i.e., the number of
needles (and associated captions) per query K = 1,
to a multi-needle setting, where there are K > 1
needles.

Image Data. In this paper, we use the MS
COCO 2014 validation set (Lin et al., 2014) as
our source dataset for constructing our MMNeedle
dataset. Note that our data construction approach
is agnostic to the dataset and can be applied to
any dataset containing images with paired captions
that describe the content of the images. We re-
size each original image from the MS COCO 2014
validation set to 256× 256 pixels before stitching
them into a larger image. The image resolution
of 256 pixels is chosen to ensure sufficient image
quality; our preliminary studies show that humans
(and MLLMs) cannot effectively recognize MS
COCO images with resolution lower than 256 (see
examples in Fig. 1 and more in Appendix A). We
then stitch these sub-images using stitching sizes
of 1× 1, 2× 2, 4× 4, and 8× 8, leading to larger
images with resolutions of 256× 256, 512× 512,
1024×1024, and 2048×2048, respectively. Given
that Claude 3 supports a maximum resolution of
1092× 1092 pixels and GPT-4 (including GPT-4V
and GPT-4o) supports a maximum resolution of
2000 pixels for the long side of an image, we have
chosen 2048 pixels as the maximum resolution for
our stitched images. Note that these models will re-
size images that exceed their respective size limits.

3.3 Dataset Construction: Automated
Sampling

Positive and Negative Samples. Our dataset is di-
vided into (1) positive samples, where a sub-image
(needle) exists in the context (haystack) to match
the given caption, and (2) negative samples, where
no sub-image (needle) exists in the context that can
match the given caption. To construct the dataset
with balanced data distribution, we generate 5000
samples each for positive and negative samples for
each (M,N,K) combination, leading to 280,000
needle-haystack pairs in total.

Sampling Process. Specifically, we construct
our dataset with the following sampling process:

• Step 1: Sampling Single-Image Haystacks.
For each stitch size N ∈ {1, 2, 4, 8}, we
first construct 10,000 stitched images, with
each sub-image randomly sampled from the
MS COCO validation dataset (ensuring each
stitched image has no repetitive sub-images).
These 10,000 stitched images directly consti-

tute the haystacks for stitching size N in the
M = 1 setting.

• Step 2: Sampling Multi-Image Haystacks.
For each stitch size N ∈ {1, 2, 4, 8} in the
M = 10 setting, we sample 10 different im-
ages as a haystack from the 10,000 stitched im-
ages constructed in Step 1. We sample 10,000
such haystacks for stitching size N (ensuring
each haystack has no repetitive stitched im-
ages).

• Step 3: Generating Positive Samples. We
sample a sub-image as a needle from a unique
haystack (i.e., M×N×N sub-images) in Step
1 or Step 2, obtain its associated caption MS
COCO annotations, and use this caption as the
query in our MMNeedle evaluation (see Fig. 1).
We repeat this process for K times in multi-
needle settings, where K = 2 or K = 5 (ensur-
ing each needle is a unique sub-image). This
process ensures that the needles are inside the
haystack.

• Step 4: Generating Negative Samples. From
the MS COCO 2014 validation set, we sample
an image outside the haystack in Step 1 or Step
2 and use the image as the needle for a negative
sample. We also obtain the needle’s associated
caption from MS COCO annotations and use
it as the query in our MMNeedle evaluation.
We repeat this process for K times in multi-
needle settings, where K = 2 or K = 5 (ensur-
ing each needle refers to a unique sub-image).
This ensures that the needles are outside the
haystack.

With the process above, we construct 5,000 pos-
itive and 5,000 negative samples for each setting
(M,N,K), where M ∈ {1, 10}, N ∈ {1, 2, 4, 8},
and K ∈ {1, 2, 5}.

3.4 Evaluation Metrics
As mentioned in the previous sections, there are
two “axes” for different settings in our MMNeedle
evaluation: (1) the number of input images M ,
which indicates how many images are passed as
inputs to an MLLM, and (2) the stitching size N ,
where N is the number of total columns/rows of
sub-images (where N = 1 means that each input
image is the original image from the MS COCO
2014 validation set, otherwise, it is N ×N images
stitched as one). Increasing each of these axes adds
difficulty to MLLMs due to the increased context
length, i.e., the haystack size. We propose and use
the following evaluation metrics:



Single Needle. For the single-needle setting, we
define three different metrics to evaluate as follows:

• Existence Accuracy is the proportion of sam-
ples in which the model correctly predicts
whether the needle exists in the input image
sequence.

• Index Accuracy is the proportion of samples
where the model correctly predicts the index
m ∈ {1, . . . ,M} of the stitched image con-
taining the needle (e.g., m = 5 in Fig. 1).

• Exact Accuracy (success rate of the needle
retrieval (Reid et al., 2024)) is the proportion
of samples where the model correctly predicts
the needle sub-image’s location, i.e., index m,
row r and column c.

Multiple Needles. We use similar metrics for
the multi-needle setting (details in Appendix B).

Coarse-to-Fine Evaluation. From the def-
initions, we can see that these accuracies
satisfy the relation “Existence Accuracy” ≥
“Index Accuracy” ≥ “Exact Accuracy” for a given
model and evaluation setting (M,N,K). This indi-
cates a coarse-to-fine evaluation using our devised
metrics.

Automated Evaluation Protocol. We design an
automated evaluation protocol for the defined three
metrics as follows:

• Ground Truth Format. (1) For each positive
sample, i.e., the needle sub-image is in the con-
text, the ground-truth output is “m, r, c” that
describes the location of the needle, where m
is the image index (m ∈ 1, ...,M ), and r, c are
the row and column of the sub-image (needle)
in image m, respectively (r, c ∈ 1, ..., N ). (2)
For each negative sample, i.e., no needle sub-
image is in the context, the ground-truth output
is “-1”, indicating the needle does not exist.
The multi-needle setting uses a similar format
(details in Appendix B).

• Existence Accuracy is measured by whether
the MLLM outputs “-1” (in multi-needle set-
tings, we match “-1” for all the needles, sep-
arated by “;”, or alternatively just one “-1”).
Specifically, for positive samples (targets ex-
ist), the existence accuracy is the proportion
of samples where the MLLM does not predict
“-1”, and for negative samples (targets do not
exist), the existence accuracy is the proportion
of of samples where the MLLM predicts “-1”
(see Sec. 4.3 for details).

• Index Accuracy is measured by whether the
image index m̂ predicted by MLLM matches

the ground truth m. For multi-needle settings,
predictions are considered correct only if the
MLLM predicts the correct m for all needles.
Note that even for the M = 1 settings, the
index accuracy may not be perfect (100%), be-
cause the model can fail to output the only
image index “1”. Therefore, we also evaluate
the index accuracy of different models in the
M = 1 settings (see Sec. 4.3 for details).

• Exact Accuracy is measured by whether the
tuple (m̂, r̂, ĉ) predicted by MLLM matches
the ground truth (m, r, c). For multi-needle
test, predictions are considered correct only if
the MLLM predicts the correct (m, r, c) for all
needles.

4 Experiments

In this section, we describe the evaluation results
of various MLLMs on our MMNeedle dataset.

4.1 Evaluated MLLMs

We conduct MMNeedle evaluation for both API-
based models and open-source models:

• API-Based Models. We evaluate state-of-the-
art API-based MLLMs, including Claude 3
Opus (Feb 2024) (ant, 2023), Gemini Pro 1.0
(Feb 2024) (Team et al., 2023), Gemini Pro
1.5 (May 2024) (Reid et al., 2024), GPT-4V
(March 2024) (Achiam et al., 2023), and GPT-
4o (May 2024) (ope, 2024).

• Open-Source Models. We evaluate top
open-source multimodal LLMs, including
CogVLM (CogVLM-17B/CogVLM2-Llama-
3) (Wang et al., 2023), Fuyu-8B (Bavishi
et al., 2023), mPLUG-Owl-v2 (Ye et al.,
2023), InstructBLIP (InstructBLIP-Vicuna-
13B/InstructBLIP-Flan-T5-XXL) (Dai et al.,
2024), IDEFICS2 (Laurençon et al., 2024),
and LLaVA-Llama-3 (Li et al., 2024). Note
that CogVLM and InstructBLIP do not support
multi-image inputs; therefore, we do not test
them for our multi-image (M = 10) settings.

See Appendix C for more details on evaluated
MLLMs.

4.2 Overview of MMNeedle Evaluation
Results

Fig. 2 shows an intuitive comparison of the ex-
act accuracy (defined in Sec. 3.4) across advanced
MLLMs in various single-needle (K = 1) settings,
including Claude 3 Opus, Gemini Pro 1.0, Gemini
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Figure 2: MMNeedle evaluation performance comparison (Claude-3 refers to Claude 3 Opus, and Gemini-1.0/1.5
refers to Gemini Pro 1.0/1.5). The x-axis shows the results of different models, and the y-axis shows the results
on various input image number M and stitching size N . For each row, i.e., setting (M,N), we show the average
accuracy (%) of each model. For each stitched image, the color of row r, the column c indicates the accuracy of
predicting the exact position for samples with the “needle” sub-image in position (r, c) of the stitched image. For the
M = 10 setting, we show the average accuracy of each location (r, c) over 10 images. A redder cell indicates lower
accuracy, while a greener cell indicates higher accuracy. The best result for each row is marked with underlining.

Pro 1.5, GPT-4V, GPT-4o, and LLaVA-Llama-3.
Each heatmap is divided into N ×N cells, where
the cell at row r, column c is marked in a color
that indicates the average accuracy of the model
predicting the exact location for needle sub-images
at (m, r, c) (m is the image index of the needle).
We highlight the following observations:

• Impact of Stitching Size N and Input Im-
age Number M : For an MLLM (one column
in Fig. 2), if we fix the number of input images
M , the accuracy drops quickly when increas-
ing the stitching size N . This drop is more
significant for M = 10 than for M = 1, where
the accuracy drops to near zero for all models
on samples with M = 10, N = 8.

• Capability of the API-Based Models: For
a fixed (M,N) pair (one row in Fig. 2), the
performance varies significantly for different
MLLMs, particularly for samples with low
stitching size N . GPT-4o achieves the high-
est accuracy except for M = 1, N = 8 sam-

ples, where Gemini Pro 1.5 reaches the best
performance and GPT-4o is the second-best.

• Capability of the Open-Source Models:
LLaVA-Llama-3, as a top open-source model,
enjoys comparable performance with frontier
API-based models such as Claude 3 Opus and
Gemini Pro 1.0 for M = 1 samples, while
lagging behind in M = 10 samples.

We also analyze the error patterns. As illustrated
in Fig. 2, the models demonstrate higher accuracy
when the needles are positioned in the corners of
the image compared to when they are located in
the center. This trend is particularly pronounced
in Gemini-1.5 and LLaVA-Llama-3, in contrast to
GPT-4o. See Sec. 4.3 below for details and more
evaluation results.

4.3 Detailed Results of the Three Defined
Metrics

In this section, we discuss the results of the MM-
Needle evaluation in various settings of (M,N,K)



Table 2: Accuracy (%) for the M = 1 setting. We mark the best results with bold face. Note that the existence
accuracy is measured by whether the model outputs “-1”. The index accuracy is not always 100% because the
model can fail to output the only image index “1”.

Stitching 2× 2 4× 4 8× 8

Metrics Existence Index Exact Existence Index Exact Existence Index Exact

API-Based Models

Claude 3 Opus 75.38 74.77 52.25 58.70 58.00 12.30 56.36 54.85 1.60
Gemini Pro 1.0 97.10 85.09 29.53 88.42 82.88 24.78 55.62 45.18 2.11
Gemini Pro 1.5 99.59 99.38 90.34 98.85 98.44 39.85 96.65 96.65 29.81
GPT-4V 92.64 92.64 86.09 97.29 97.19 54.72 98.20 98.20 7.30
GPT-4o 99.00 99.00 94.60 99.50 99.50 83.00 99.60 99.60 19.00

Open-Source Models

CogVLM-17B 99.90 0.80 0.00 97.50 3.30 0.10 96.90 22.90 0.30
CogVLM2-Llama-3 69.10 24.60 7.30 69.90 16.40 0.90 55.90 5.30 0.10
Fuyu-8B 100.00 0.50 0.00 100.00 0.00 0.00 100.00 0.00 0.00
mPLUG-Owl-v2 96.60 48.60 1.90 90.70 34.30 0.30 86.30 36.90 0.70
InstructBLIP-Vicuna-13B 100.00 6.90 0.00 100.00 11.70 0.00 100.00 32.00 0.00
InstructBLIP-Flan-T5-XXL 100.00 100.00 3.80 100.00 100.00 6.20 100.00 93.00 2.20
IDEFICS2-8B 75.80 69.30 18.90 95.80 86.00 7.80 39.60 24.50 0.90
LLaVA-Llama-3 100.00 93.70 43.80 97.20 93.00 17.50 95.40 95.30 3.30

Table 3: Accuracy (%) for the M = 10 setting. We mark the best results with bold face. Note that the existence
accuracy is measured by whether the model outputs “-1”.

Stitching 1× 1 2× 2 4× 4 8× 8

Metrics Existence Index Exact Existence Index Exact Existence Index Exact Existence Index Exact

API-Based Models

Claude 3 Opus 83.77 67.23 66.93 66.60 9.90 4.60 64.78 6.46 0.40 54.13 5.93 0.00
Gemini Pro 1.0 83.66 33.90 16.25 81.63 10.74 4.82 58.92 4.81 0.40 18.11 1.61 0.00
Gemini Pro 1.5 97.08 90.04 89.94 98.84 53.42 45.21 96.17 17.26 6.09 89.02 9.86 0.62
GPT-4V 95.11 75.59 72.36 98.32 52.10 34.24 99.80 24.87 7.58 99.50 10.57 0.00
GPT-4o 99.00 97.00 97.00 99.60 87.20 81.80 100.00 45.00 26.90 99.80 17.80 1.00

Open-Source Models

Fuyu-8B 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00
mPLUG-Owl-v2 15.90 5.60 0.40 70.10 5.20 0.10 88.50 8.10 0.00 86.10 6.30 0.00
IDEFICS2-8B 71.10 0.30 0.00 93.80 0.70 0.00 99.60 6.40 0.00 96.60 2.40 0.00
LLaVA-Llama-3 100.00 0.20 0.00 100.00 0.10 0.00 100.00 0.00 0.00 100.00 0.00 0.00

across three metrics: Existence, Index, and Exact
Accuracy, as defined in Sec. 3.4. More results are
available in Appendix D.

Results on Single-Image Samples (M = 1).
Table 2 shows the accuracy on samples in the
M = 1 setting, with three different stitching scenar-
ios (i.e., N×N as 2×2, 4×4, and 8×8). GPT-4o
achieves the highest exact accuracy 94.60% and
83.00% for the 2 × 2 and 4 × 4 stitching, respec-
tively, while Gemini Pro 1.5 achieves the highest
exact accuracy, 29.81%, for the 8 × 8 stitching.
Among open-source models, LLaVA-Llama-3 per-
forms well in simpler stitching settings, outper-
forming Gemini Pro 1.0 by 14.27% on 2× 2 stitch-
ing, and Claude 3 Opus by 5.20% on 4×4 stitching.
The results highlight that while open-source models
can match or exceed API-based models in simpler
contexts or metrics, they generally lag behind in
more complex stitching scenarios.

Results on Multi-Image Samples (M > 1).
Table 3 extends our evaluation to multi-image sam-
ples, i.e., M = 10. It shows that GPT-4o con-
sistently performs best in terms of index/exact ac-
curacy for all stitching sizes, outperforming other

models’ exact accuracy by at least 7.06%, 36.59%,
19.32%, and 0.38% on 1 × 1, 2 × 2, 4 × 4, and
8 × 8 stitching, respectively. These results indi-
cate stronger long-context capability of GPT-4o for
multi-image samples compared to other state-of-
the-art models, such as GPT-4V and Claude 3 Opus.
In contrast, open-source models only achieve near-
zero exact accuracy in all stitching sizes. Note that
from 1× 1 to 4× 4 stitching, GPT-4o’s exact accu-
racy drops rapidly from 97.00% to 26.90%, while
its index accuracy drops from 97.00% to 45.00%;
this shows that even the best performing MLLM
struggles in long-context needle test, verifying the
effectiveness of both our coarse-to-fine metrics and
MMNeedle’s dataset in stress-testing MLLMs.

Results on Multi-Needle Samples (K > 1). Ta-
ble 4 shows the results of different models on multi-
needle samples, i.e., the number of needles K = 2.
Gemini Pro 1.5 achieves the highest exact accuracy
87.88% on 2 × 2 samples, and GPT-4o achieves
the highest exact accuracy 57.00% on 4 × 4 sam-
ples. In contrast, the exact accuracy of open-source
models is close to zero for all stitching sizes. These
results indicate a large gap between the API-based



Table 4: Accuracy (%) for samples with M = 1 in the 2-needle setting. We mark the best results with bold face.
Existence accuracy is measured by whether the model outputs “-1” for all the needles. Index accuracy is not always
100% because models can fail to output the only image index “1”.

Stitching 2× 2 4× 4 8× 8

Metrics Existence Index Exact Existence Index Exact Existence Index Exact

API-Based Models

Claude 3 Opus 100.00 66.00 32.00 97.00 31.00 1.00 98.00 25.00 0.00
Gemini Pro 1.0 100.00 79.80 9.09 95.00 50.00 2.00 68.00 11.00 0.00
Gemini Pro 1.5 100.00 94.95 87.88 100.00 84.00 22.00 98.00 80.00 6.00
GPT-4V 100.00 90.72 71.13 100.00 95.00 34.00 100.00 93.41 1.10
GPT-4o 100.00 84.00 76.00 100.00 84.00 57.00 100.00 78.00 2.00

Open-Source Models

CogVLM-17B 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00
CogVLM2-Llama-3 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00
Fuyu-8B 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00
mPLUG-Owl-v2 98.00 0.00 0.00 94.00 2.00 0.00 96.00 3.00 0.00
InstructBLIP-Vicuna-13B 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00
InstructBLIP-Flan-T5-XXL 100.00 17.00 1.00 100.00 0.00 0.00 100.00 0.00 0.00
IDEFICS2-8B 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00
LLaVA-Llama-3 100.00 0.00 0.00 100.00 2.00 0.00 100.00 12.00 0.00

Table 5: Existence Accuracy (%) for the negative sam-
ples (the ground truth is “-1”). We mark the best results
with bold face. Note that the existence accuracy is mea-
sured by whether the model outputs “-1”. “-” means
that the models do not support multi-image inputs.

Stitching 1× 1 2× 2 4× 4 8× 8

Context 10 imgs 1 img 10 imgs 1 img 10 imgs 1 img 10 imgs

API-Based Models

Claude 3 Opus 81.78 77.88 54.10 67.03 38.38 51.10 53.38
Gemini Pro 1.0 90.60 89.67 67.14 64.73 56.00 57.27 87.13
Gemini Pro 1.5 92.23 87.70 54.56 65.88 18.77 33.75 17.50
GPT-4V 90.57 92.98 36.01 52.70 0.71 3.40 0.10
GPT-4o 89.40 91.90 34.80 61.60 1.30 3.10 0.20

Open-Source Models

CogVLM-17B - 3.80 - 3.50 - 2.50 -
CogVLM2-Llama-3 - 90.30 - 65.50 - 52.70 -
Fuyu-8B 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mPLUG-Owl-v2 91.70 36.00 35.60 16.20 12.70 12.70 13.40
InstructBLIP-Vicuna-13B - 0.00 - 0.00 - 0.00 -
InstructBLIP-Flan-T5-XXL - 0.00 - 0.00 - 0.00 -
IDEFICS2-8B 30.80 89.40 6.90 55.70 0.60 62.00 3.10
LLaVA-Llama-3 0.00 11.10 0.00 7.40 0.00 5.90 0.00

and the open-source models. See Appendix D for
more results and analysis on multi-needle samples
(K = 2 or K = 5).

Results on Negative Samples. Table 5 shows
the existence accuracy (defined in Sec. 3.4) for
negative samples (defined in Sec. 3.3). For API-
based models, Claude 3 Opus and Gemini Pro
1.0 perform well across different configurations,
suggesting robustness in handling varied context-
length for the negative samples. On the other hand,
GPT-4V and GPT-4o achieve inferior accuracy on
more complex settings, including multi-image in-
puts (M = 10) and/or large stitching size (N = 4
or N = 8). These results reveal that: (1) Even top
API-based models severely suffer from hallucina-
tion; they incorrectly believe the needle exists in
the haystack when it does not. (2) API-based mod-
els with stronger needle-retrieval performance, e.g.,
GPT-4o, tend to suffer more from hallucination.

The performance of open-source models varies

significantly, with some generally underperforming
compared to API-based models (e.g., CogVLM-
17B, Fuyu-8B, InstructBLIP and LLaVA-Llama-
3), while others demonstrate high existence accu-
racy (e.g., CogVLM2-Llama-3, mPLUG-Owl-v2,
IDEFICS2-8B). Notably, IDEFICS2-8B achieves
the highest accuracy of 62.00% on M = 1, N = 8
samples, indicating a low level of hallucination in
this setting.

Summary. These results show that our exis-
tence, index, and exact accuracy are designed to
differentiate the model capabilities across various
settings while also facilitating a transition from
easier to more challenging tasks.

For example, we demonstrate that various met-
rics highlight the long-context capabilities of mod-
els under different settings:

• Exact Accuracy: In Table 2, where the number
of input images M = 1, we focus on evaluat-
ing exact accuracy, which measures whether
the model correctly predicts both the row and
column of the needle.

• Index Accuracy: In Table 3, where the num-
ber of input images M = 10, we emphasize
index accuracy, assessing whether the model
correctly identifies the image index within the
image haystack. Together with Exact Accuracy,
it is crucial for evaluating whether an MLLM
can understand images and sub-images in the
long-context scenario.

• Existence Accuracy: In Table 4, where negative
samples are introduced, we evaluate existence
accuracy, which reflects whether the model cor-
rectly determines that the needle is not present
in the haystack. This is particularly relevant



for benchmarking hallucination in MLLMs.
These analyses underscore the different use cases
and the necessity of our coarse-to-fine metrics.
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Figure 3: Exact Accuracy of Models on Varying Sample
Sizes in the M = 1, N = 2 Setting.

4.4 Statistical Significance
Fig. 3 shows the results of our hypothesis test of
exact accuracy (success rate) over varying sample
sizes, i.e., from 100 to 1000 samples. The solid
lines indicate the exact accuracy, while the shaded
areas indicate the standard error. The results show
that for all models, (1) the accuracy stabilizes af-
ter 500 samples, and (2) the standard error drops
significantly as sample sizes increase from 100 to
1000 samples. This demonstrates (1) the necessity
of using larger sample size and (2) the sufficiency
of using a sample size of 1000, to achieve reliable
evaluation (see Appendix D for details and more
experiments on statistical significance).

5 Conclusion

We propose MMNeedle, a benchmark to evalu-
ate MLLMs’ long-context capabilities. MMNee-
dle includes a comprehensive dataset and estab-
lishes diverse settings as well as a systematic set
of coarse-to-fine evaluation metrics. We reveal that
while API-based models, such as GPT-4o, outper-
form open-source models in long-context scenar-
ios, they still struggle with hallucination issues in
negative samples and challenges in large stitch-
ing size/multi-needle retrieval. A limitation of our
MMNeedle evaluation is the assumption that the
MLLM takes both images and texts as inputs and
supports multiple-image inputs. However, we ar-
gue that these are necessary requirements for an
ideal MLLM.

6 Ethical Considerations

Our MMNeedle dataset, created from MS COCO
images, adheres to ethical guidelines and ensures
that the usage of images is respectful and does

not infringe on personal privacy. We ensure that
MMNeedle dataset does not contain any personally
identifiable information or offensive content. We
bear all responsibility in case of violation of rights
and confirm that we use the CC BY 4.0 data license.

Despite these precautions, there remains a risk
that the benchmark’s capabilities could be misused,
particularly in scenarios where models are pushed
to handle extensive visual contexts that may lead to
unintended inferences or biases. Additionally, the
risk of hallucination in negative samples, where the
model incorrectly identifies a nonexistent target,
highlights the importance of responsible use and
the need for thorough evaluation before deploying
these models in high-stakes applications.

7 Limitations

Our MMNeedle Benchmark assumes that the eval-
uated MLLM can understand and follow both vi-
sual and textual instructions, and that the model
can process multiple images as input in a single
query. While this is not general, we note that these
assumptions (and capabilities) are necessary for
modern, state-of-the-art MLLMs. Adding textual
or visual index labels next to each image or sub-
image could potentially enhance the performance
of models. However, we leave this exploration
for future work for the following reasons: (1) Our
MMNeedle’s goal is to measure MLLM’s long-
context capability on natural images. Accuracy of
predicting sub-image indices serves as one way of
measuring such capabilitiy, but the accuracy itself
is not the final goal. (2) This approach alters the
original image content. MMNeedle is also limited
by the supported number M and stitching size N of
image inputs in MLLMs. However, our framework
can seamlessly accommodate larger M and N once
open-source and API models (e.g., GPT-4o) begin
to support them.
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A Details of the MMNeedle Dataset

We include all the images, captions, prompts, and
needle-haystack pairs of our MMNeedle Dataset
at https://github.com/Wang-ML-Lab/multimodal-
needle-in-a-haystack.

Limits on the Image Numbers. We set the
maximum number of complete images to M = 10
because this is the largest number of input images
that GPT-4V/4o can support. Note that our frame-
work can easily handle larger N and M once open-
source and API models (e.g., GPT-4o) start to sup-
port them. Table 6 below summarizes each API-
based model’s limit for the number of images.

Table 6: Maximum number of images per request. "*"
indicates that the OpenAI GPT-4V/4o API also supports
a maximum of 10 images with high quality. Other num-
bers are hard limits.

API-Based Model Limit

Azure GPT-4V/4o 10
OpenAI GPT-4V/4o 10∗

Claude 3 Opus 20
Gemini 1.0 Pro 16

It is worth noting that:
• Azure OpenAI API only supports 10 images

for GPT-4V/4o. For example, an Azure doc-
ument states that “When uploading images,
there is a limit of 10 images per chat request.”
Another Azure document states that “GPT-4o
max images per request” is 10.

• Regular OpenAI API also supports a maximum
of 10 images with high quality. Specifically, an
OpenAI document states that “the token cost of
a given image is determined by two factors: its
size, and the detail option on each image_url
block”. Therefore, to ensure sufficient qual-
ity/resolution of image inputs, we cannot up-
load more than 10 images to GPT-4V/4o in the
MMNeedle benchmark.

• Other models also have a limit on the number
of input images (e.g., 20 for Claude and 16
for Gemini). Specifically, the Claude 3 Opus
document states that “You can include multiple
images in a single request (up to 5 for claude.ai
and 20 for API requests)”, and the Gemini 1.0
Pro Vision supports up to “16 images” as “Max-
imum number of images per request”.
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Figure 4: Random samples of 8× 8 stitched images in the MMNeedle dataset.

Therefore, to ensure a fair comparison, we con-
ducted all multi-image experiments on the M = 10
images setting.

Purpose of Image Stitching. The reason we
introduce stitching with N × N > 1 × 1 is as
follows:

• API-based models, such as GPT-4V/4o, can
support at most 10 images as inputs, which is
surprisingly small. To further evaluate long
contexts with more images, we decided to in-
troduce image stitching. As a result, when
M = 10, N × N = 8 × 8, there are equiva-
lently 640 sub-images in the context, which is
sufficiently large compared to the API limits
of a few images.

• Image stitching enables us to conduct addi-
tional evaluation on MLLMs’ capability in lo-
calization and retrieval of sub-images within
the complete input images, which is another
important aspect of long-context problems.

Resolution of Sub-Images. As discussed
in Sec. 3.2 of the main paper, we find that humans
and LLMs cannot effectively recognize MS COCO
images with a resolution lower than 256. Fig. 4
shows 4 random samples with 8× 8 stitching from
our MMNeedle dataset. As demonstrated in these
images, our 256 × 256 resolution ensures a rea-
sonable balance of input tokens and image quality.
Consequently, for a stitch size of N×N , the overall
resolution becomes 256N × 256N , resulting in a



longer input context length that scales linearly with
the stitch size N . This approach ensures that we do
not downsample the sub-images in the stitched im-
age, while still maintaining high image quality for
the model’s comprehension. The Azure OpenAI
document states that: “If an image is ambiguous
or unclear, the model will do its best to interpret
it. However, the results might be less accurate. A
good rule of thumb is that if an average human
can’t see the info in an image at the resolutions
used in low/high res mode, then the model can’t
either.” The Anthropic document also states that
“Ensure your images are clear and not too blurry
or pixelated. Claude may struggle to accurately
interpret unclear or low-quality images.” Indeed,
our stitched images demonstrate sufficiently high
resolution to be recognized by both humans and
MLLMs, and there is very little content loss or
noise introduced.

Data Source. The asset we use in our paper,
i,e, MS COCO 2014 dataset, is licensed under a
Creative Commons Attribution 4.0 License. This li-
cense permits the copying, redistribution, remixing,
transforming, and building upon the material for
any purpose, including commercial use, provided
appropriate credit is given, and any changes made
are indicated. As a user of the MS COCO dataset,
we acknowledge and comply with the requirements
of the CC BY 4.0 license.

Evaluation Metrics for Multiple Needles. As
mentioned in Sec. 3.4 of the main paper, we use
similar metrics for the multi-needle setting:

• Existence Accuracy is the proportion of sam-
ples in which the model correctly predicts
whether any needle exists, i.e., at least one tar-
get caption matches a sub-image in the input
image sequence.

• Index Accuracy is the proportion of samples
where the model correctly predicts the index
m ∈ {1, ...,M} of the stitched image contain-
ing the needle for all the needles.

• Exact Accuracy is the proportion of samples
where the model correctly predicts the needle
sub-image’s location, i.e., index m, row r and
column c for all the needles.

In this paper, we evaluate MLLMs with the num-
ber of needles K ∈ {1, 2, 5}. Our primary eval-
uation involves testing on the first 1000 positive
and the first 1000 negative samples in our dataset
using a single needle. As complementary experi-
ments, we also test multi-needle settings with 2 and
5 needles on the first 100 positive and the first 100

negative samples in our dataset, respectively. Due
to time and rate limits, as well as the high cost of
testing API models, we are able to test 2000 sam-
ples for each single-needle setting and 200 samples
for each multi-needle setting. However, our test
easily scale to more samples, such as other sam-
ples in our 10,000-sample dataset. We also show
that the accuracy stabilizes when the test number
reaches 1000 in Sec. 4.4 of the main paper and Ap-
pendix D.

Prompt Design For single-needle evaluation, we
use the following prompt for the evaluated LLM:

Input = [Images] + Instructions + "\n"
+ "Caption: " + Caption

where the instructions to MLLMs is as follows:

Given M images indexed from 1 to M , each
divided into N×N sub-images, identify the
sub-image that best matches the provided
caption. Respond with “index, row, column”
and nothing else. For example, “1, 2, 3”
indicates the sub-image in the first image,
second row, and third column. If no match
is found, respond only with “-1”.

We use a similar prompt for the multi-needle
setting. Specifically, for K-needle (K > 1) evalua-
tion, we use the following prompt for the evaluated
MLLM:

Input = [Images] + Instructions + "\n"
+ "Caption 1: " + Caption_1 + "\n"+ "Caption 2: " + Caption_2
+ "\n" + ... + "Caption K: " + Caption_K,

where the instructions to MLLMs is as follows:

Given M images indexed from 1 to M ,
each divided into N ×N sub-images, iden-
tify the sub-images that best match the pro-
vided K captions. Respond in the format:
“index_1, row_1, column_1; ...; index_K,
row_K, column_K.” Only provide this in-
formation. For example, “1, 2, 3” indicates
the sub-image in the first image, second row,
and third column. If no sub-image matches
a caption, respond with “-1” for that cap-
tion.

Note that for both single-needle and multi-needle
settings, when M = 1 or N = 1, we remove the
“s” in “images” or “sub-images” in our prompt for
coherent description, respectively.



B Details of Evaluation Process

Automated Evaluation Protocol. As discussed
in Sec. 3.4 of the main paper, we design an au-
tomated evaluation protocol for the three defined
metrics as follows:

• Ground Truth Format. For each caption in a
test sample, (1) if it is positive, i.e., the needle
sub-image is in the context, the ground-truth
output is “m, r, c” that describes the location
of the needle, where m is the image index
(m ∈ {1, ...,M}), and r, c are the row and
column of the sub-image (needle) in image m,
respectively (r, c ∈ {1, ..., N}); (2) if it is neg-
ative, meaning no needle sub-image is in the
context, the ground truth output is “-1”, indicat-
ing the needle does not exist. For multi-needle
settings, the ground truth is a concatenation of
the ground-truth answer for each needle in the
order of input captions, separated by “;”. For
example, for a 2-needle test with M = 10 and
N = 8, a positive answer can be “1, 2, 8; 10,
3, 5” and a negative answer should be “-1; -1”.

• Existence Accuracy is measured by whether
the MLLM outputs “-1” (in multi-needle set-
tings, we match “-1” for all the needles, sep-
arated by “;”, or alternatively just one “-1”).
Specifically, for positive samples (targets ex-
ist), the existence accuracy is the proportion
of samples where the MLLM does not predict
“-1”, and for negative samples (targets do not
exist), the existence accuracy is the proportion
of of samples where the MLLM predicts “-1”.

• Index Accuracy is measured by whether
the image index m̂ predicted by the MLLM
matches the ground truth m. For multi-needle
settings, predictions are considered correct
only if the MLLM predicts the correct m for all
needles. Note that even for the M = 1 settings,
the index accuracy may not be perfect (100%),
because the model can fail to output the correct
image index “1”. Therefore, we also evaluate
the index accuracy of different models in the
M = 1 settings.

• Exact Accuracy is measured by whether the tu-
ple (m̂, r̂, ĉ) predicted by the MLLM matches
the ground truth (m, r, c). For multi-needle set-
tings, predictions are considered correct only
if the MLLM predicts the correct (m, r, c) for
all needles.

• (Multi-Needle) Individual Accuracy is mea-
sured by whether the tuple (m̂, r̂, ĉ) predicted

by the MLLM matches the ground truth
(m, r, c) in multi-needle samples, where pre-
dictions are considered correct only if the
MLLM predicts the correct (m, r, c) for each
individual needle.

This automated evaluation protocol can be seam-
lessly integrated with prompt design, where our
prompts ask the MLLM to output in the format
of the ground truth. As discussed in Sec. 3.1 of
the main paper, the model can successfully pro-
duce a correct answer only if it understands our
instructions, recognizes where there are needles in
the haystack that match the given text query (tar-
get captions), and outputs in the correct format.
Otherwise, the MLLM may produce answers with
incorrect formats or meanings, resulting in failed
cases.

Our multimodal evaluation benefits from canon-
ical ground-truth answers and is therefore not af-
fected by the similarity of the needles to test and
data points in the training set in terms of output
tokens.

(1) Compared to other open-ended evaluations,
since we ask the MLLMs to output the loca-
tions of the target sub-images, the model has no
back-doors to output a “seemingly” correct an-
swer as in other open-ended generation. These
back-doors include learning the next token dis-
tribution from the training set and responding
with the contents of other images.

(2) Compared to multiple-choice questions, the
chance that the model outputs coincidentally
match the correct answer is also much lower.
For example, the accuracy of a random guess in
4-choice problems is always 25%, while even
in our easiest settings (1 image, 2×2 stitching;
10 images, 1×1 stitching), the accuracy is 25%
and 10%, respectively.

Post-Processing. In Table 3 of the main paper,
IDEFICS2-8B M = 1, N = 4 results on negative
samples are as low as 20.20% due to its failure to
follow instructions on the output format, particu-
larly affected by the “Answer: ” prefix in responses.
Therefore, we include additional parsing for this
case, resulting in an accuracy of 55.70% in the
same setting. Specifically, we use additional filter-
ing of the prefix “Answer:” for IDEFICS2-8B in
M = 1, N = 4 negative samples.



C Implementation Details

All the code, data, and instructions required to re-
produce the main experimental results are provided
in the supplementary materials (“Software” and
“Data”).

Compute and Resources. For the API-based
models, we used the corresponding API credits
to conduct our experiments: Anthropic API for
Claude 3 Opus, Google Cloud API for Gemini Pro
1.0 and Gemini Pro 1.5, and Azure OpenAI API
service for GPT-4V and GPT-4o. For the open-
source models, we used 2 Nvidia A100 GPUs for
our evaluation. Each model required a few hours to
a few days to complete the evaluation, depending
on the API rate limit or GPU memory limit.

Model Details. As discussed in Sec. 4.1 of the
main paper, we conduct MMNeedle evaluation for
both API-based models and open-source models:

• API-based models are state-of-the-art multi-
modal LLMs with API calling access:

– Claude 3 Opus (ant, 2023) is the strongest
MLLM developed by Anthropic. We
use the model version claude-3-opus-
20240229.

– Gemini Pro 1.0 (Team et al., 2023) is an
advanced version of Google Gemini, offer-
ing enhanced performance in multimodal
tasks. We use the model version gemini-
1.0-pro-vision-latest.

– Gemini Pro 1.5 (Reid et al., 2024) is built
upon Gemini Pro 1.0 with further optimiza-
tions in multimodal capability, serving as
the strongest model version of Google
Gemini. We use the model version gemini-
1.5-pro-latest.

– GPT-4V (Achiam et al., 2023) is an exten-
sion of OpenAI’s GPT-4, equipped with
vision capabilities for multimodal tasks.
We use Azure OpenAI API with the model
version 2024-03-01-preview.

– GPT-4o (ope, 2024) is the latest and
strongest variant of OpenAI’s GPT-4. We
use Azure OpenAI API with the model
version 2024-05-01-preview.

• Open-source models are state-of-the-art meth-
ods with open access to their weights:

– CogVLM (Wang et al., 2023) is a state-
of-the-art MLLM for single-image in-
puts. We evaluate CogVLM-17B-base
and CogVLM2-Llama-3 (the latest and
strongest version).

GPT-4VClaude 3 Opus Gemini Pro 1.0

Gemini Pro 1.5 GPT-4oLLaVA-Llama-3
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Figure 5: Accuracy (%) under different needle depths
and context lengths on M = 10 samples. A redder cell
indicates lower accuracy, while a greener cell indicates
higher accuracy.

– Fuyu-8B (Bavishi et al., 2023) is a state-
of-the-art, 8-billion-parameter model that
excels in multimodal tasks compared to
other models of similar size.

– mPLUG-Owl-v2 (Ye et al., 2023) is an
updated version of mPLUG-Owl and also
a state-of-the-art MLLM.

– InstructBLIP (Dai et al., 2024) is an-
other state-of-the-art MLLM for single-
image inputs. We evaluate InstructBLIP-
Vicuna-13B and InstructBLIP-Flan-T5-
XXL, which are its two strongest variants.

– IDEFICS2 (Laurençon et al., 2024) is the
latest version of IDEFICS and also a state-
of-the-art MLLM.

– LLaVA-Llama-3 (Li et al., 2024) is the
latest and strongest version of LLaVA (Liu
et al., 2024) and also a state-of-the-art
MLLM.

Samples Skipped by API-based Models. Due
to the built-in filters for the API-based models, they
may refuse to answer questions for a small number
of samples in our dataset. However, the number of
refused questions is limited to dozens out of 2,000
samples in each setting. Therefore, excluding these
vacant samples in the results does not affect any
of our conclusions. See the statistical significance
discussion in Appendix D, as well as Sec. 4.4 of
the main paper.

D More Experimental Results

Effect of Needle Depth. We investigated the effect
of needle depth on the accuracy of MLLMs. Specif-
ically, we tested different needle depths ranging
from 1 to 10 for M = 10 images in a single-needle
setting. We calculated the accuracy for each depth,



Table 7: Exact Accuracy ± Standard Error (%) of GPT-4V for the 1-needle samples with different instruction
structures. We mark the best results with bold face.

Stitching 1× 1 2× 2 4× 4 8× 8

Instructions 10 imgs 1 img 10 imgs 1 img 10 imgs 1 img 10 imgs

Prompt + Caption 74.49±4.36 85.71±3.50 30.21±4.59 45.00±4.97 8.16±2.74 8.00±2.71 0.00±0.00
Caption + Prompt 74.49±4.36 80.61±3.95 33.33±4.71 49.00±5.00 5.10±2.20 9.00±2.86 0.00±0.00

analyzing how well the models could identify the
correct needle image across various depths. Fig. 5
shows the accuracy of models on different needle
depths and context lengths. The results show that
for all models, accuracy drops significantly with
increasing context lengths, while the accuracy of
different needle depths shows little variation for the
same model and context length.

Statistical Significance. To ensure the robust-
ness of our evaluation, we conducted hypothesis
tests for the exact accuracy (mean of binary value
for each sample) of different models under the bi-
nomial distribution Binomial(1, p), where p is the
probability of success on an individual trial. The
standard error (SE) of this test is calculated as fol-
lows:

SE =

√
p(1− p)

s
, (1)

where s is the number of trials (samples). Fig. 6
shows the mean and standard error of exact accu-
racy for different models in the M = 1, N = 10
setting. Note that InstructBLIP and CogVLM mod-
els do not support multi-image inputs; therefore
we exclude them in the figure. The results indicate
that the accuracy stabilizes after approximately 500
samples, and the standard error decreases signif-
icantly as the sample size increases from 100 to
1000. This highlights the importance of utilizing
larger sample sizes to ensure reliable evaluation
results, as discussed in Sec. 4.4 of the main paper.

Effect of the Instruction Order. Table 7 shows
the exact accuracy of the GPT-4V model in each
different M,N setting on 100 random positive
samples. “Prompt+Caption (default)” means our
prompt is followed by a caption in the instructions,
and “Caption+Prompt (alternative)” means a cap-
tion is followed by our prompt in the instructions.
The results indicate that these two different ordered
instructions are not statistically significantly better
than each other for any setting.

Results on Multi-Needle Single-Image Sam-
ples. In additional to Sec. 4.3 of the main pa-
per, Table 8 shows the accuracy on samples in
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Figure 6: Exact Accuracy and Standard Error of Dif-
ferent Models on M = 10, N = 1 Samples. The accu-
racies of all open-source models on these samples are
very close to 0%.

the M = 1,K = 5 setting, with three different
stitching scenarios (i.e., N ×N as 2×2, 4×4, and
8×8). GPT-4V achieves the highest exact accuracy
34.41% and 8.16% for the 2×2 and 4×4 stitching,
respectively, with accuracy dropping significantly
to 0.00% for the 8× 8 stitching. All open-source
models show zero exact accuracy across all settings,
falling behind in more needles (K = 5) scenarios.

Results on Multi-Needle Multi-Image Sam-
ples. Table 9 shows the accuracy on samples in
the M = 10,K = 2 setting, with four different
stitching scenarios (i.e., N × N as 1 × 1, 2 × 2,
4×4, and 8×8). GPT-4o achieves the highest exact
accuracy of 88.00% and 53.00% for the 1× 1 and
2 × 2 stitching, respectively, with accuracy drop-
ping significantly to 5.00% for the 4× 4 stitching.

Table 10 shows the accuracy on samples in the
M = 10,K = 5 setting, with four different stitch-
ing scenarios (i.e., N ×N as 1× 1, 2× 2, 4× 4,
and 8× 8). GPT-4o achieves the highest exact ac-
curacy of 69.00% for the 1× 1 stitching, while its
accuracy drops significantly to 8.00% for the 2× 2
stitching.

All open-source models show zero exact accu-
racy across all settings, falling behind in more com-
plex (M = 10) scenarios. These results indicate
the difficulty of our multi-needle multi-image eval-
uation.

Results on Multi-Needle Negative Samples.
Table 11 and Table 12 show the existence accu-



Table 8: Accuracy (%) in the three metrics for the 5-needle, M = 1 samples. We mark the best results with bold
face. Note that the existence accuracy is measured by whether the model outputs “-1” for all the needles. The index
accuracy is not always 100 % because the model can fail to output the correct image index “1”.

Stitching 2× 2 4× 4 8× 8

Metrics Existence Index Exact Existence Index Exact Existence Index Exact

API-based models

Claude 3 Opus 100.00 22.00 2.00 100.00 37.00 0.00 100.00 29.00 0.00
Gemini Pro 1.0 100.00 32.00 1.00 100.00 6.00 0.00 100.00 0.00 0.00
Gemini Pro 1.5 100.00 91.00 24.00 100.00 91.00 1.00 100.00 81.00 0.00
GPT-4V 100.00 55.91 34.41 100.00 68.37 8.16 100.00 61.62 0.00
GPT-4o 100.00 28.00 24.00 100.00 24.00 6.00 100.00 22.00 0.00

Open-source models

CogVLM-17B 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00
CogVLM2-LLaMA-3 100.00 0.00 0.00 100.00 1.00 0.00 100.00 0.00 0.00
Fuyu-8B 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00
mPLUG-Owl-v2 98.00 0.00 0.00 98.00 2.00 0.00 98.00 0.00 0.00
InstructBLIP-Vicuna-13B 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00
InstructBLIP-Flan-T5-XXL 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00
IDEFICS2-8B 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00
LLaVA-LLaMA-3 100.00 3.00 0.00 100.00 2.00 0.00 100.00 2.00 0.00

Table 9: Accuracy (%) in the three metrics for the 2-needle, M = 10 samples. We mark the best results with bold
face. Note that the existence accuracy is measured by whether the model outputs “-1” for all the needles.

Stitching 1× 1 2× 2 4× 4 8× 8

Metrics Existence Index Exact Existence Index Exact Existence Index Exact Existence Index Exact

API-based models

Claude 3 Opus 100.00 46.00 46.00 100.00 1.12 0.00 98.00 0.00 0.00 96.91 1.03 0.00
Gemini Pro 1.0 92.93 3.03 0.00 98.00 1.00 0.00 100.00 0.00 0.00 99.00 0.00 0.00
Gemini Pro 1.5 100.00 86.73 85.71 100.00 34.00 25.00 100.00 2.08 0.00 85.86 0.00 0.00
GPT-4V 100.00 52.17 48.91 100.00 25.58 6.98 100.00 3.45 0.00 100.00 1.19 0.00
GPT-4o 100.00 88.00 88.00 100.00 71.00 53.00 100.00 13.00 5.00 100.00 3.00 0.00

Open-source models

Fuyu-8B 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00
mPLUG-Owl-v2 66.00 0.00 0.00 90.00 0.00 0.00 97.00 0.00 0.00 96.00 0.00 0.00
IDEFICS2-8B 59.00 0.00 0.00 94.00 0.00 0.00 100.00 0.00 0.00 99.00 0.00 0.00
LLaVA-LLaMA-3 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00

Table 10: Accuracy (%) in terms of the three metrics for the 5-needle, M = 10 samples. We mark the best results
with bold face. Note that the existence accuracy is measured by whether the model outputs “-1” for all the needles.

Stitching 1× 1 2× 2 4× 4 8× 8

Metrics Existence Index Exact Existence Index Exact Existence Index Exact Existence Index Exact

API-based models

Claude 3 Opus 100.00 32.32 32.32 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00
Gemini Pro 1.0 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00
Gemini Pro 1.5 100.00 82.83 13.13 100.00 7.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00
GPT-4V 100.00 28.12 25.00 100.00 1.14 0.00 100.00 0.00 0.00 100.00 0.00 0.00
GPT-4o 100.00 73.00 69.00 100.00 37.00 8.00 100.00 0.00 0.00 100.00 0.00 0.00

Open-source models

Fuyu-8B 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00
mPLUG-Owl-v2 82.00 0.00 0.00 93.00 0.00 0.00 97.00 0.00 0.00 100.00 0.00 0.00
IDEFICS2-8B 69.00 0.00 0.00 91.00 0.00 0.00 98.00 0.00 0.00 99.00 0.00 0.00
LLaVA-LLaMA-3 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00



Table 11: Existence Accuracy (%) for the 2-needle negative samples (the ground truth is “-1; -1”). We mark the best
results with bold face. Note that the existence accuracy is measured by whether the model outputs “-1” for all the
needles. “-” means that the models do not support multi-image inputs.

Stitching 1× 1 2× 2 4× 4 8× 8

Context 10 imgs 1 img 10 imgs 1 img 10 imgs 1 img 10 imgs

API-based models

Claude 3 Opus 45.00 14.00 0.00 5.00 1.00 4.00 8.33
Gemini Pro 1.0 54.64 85.86 18.00 50.00 0.00 34.00 0.00
Gemini Pro 1.5 79.59 71.00 31.00 50.00 7.37 22.00 17.00
GPT-4V 74.75 77.00 13.40 33.00 3.00 0.00 0.00
GPT-4o 80.00 67.00 25.00 51.00 3.00 2.00 0.00

Open-source models

CogVLM-17B - 0.00 - 0.00 - 0.00 -
CogVLM2-LLaMA-3 - 0.00 - 0.00 - 0.00 -
Fuyu-8B 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mPLUG-Owl-v2 36.00 7.00 7.00 9.00 2.00 7.00 6.00
InstructBLIP-Vicuna-13B - 0.00 - 0.00 - 0.00 -
InstructBLIP-Flan-T5-XXL - 0.00 - 1.00 - 0.00 -
IDEFICS2-8B 39.00 0.00 7.00 0.00 0.00 0.00 1.00
LLaVA-LLaMA-3 0.00 0.00 0.00 0.00 0.00 0.00 0.00

racy for negative samples in multi-needle settings
(K = 2 or K = 5). In Table 11, representing the
K = 2 setting, Gemini Pro 1.5 achieves the highest
existence accuracy in the M = 10, N ∈ {2, 4, 8}
scenarios, indicating a low level of hallucination
for long-context samples. In contrast, in Table 12,
representing the K = 5 setting, GPT-4o achieves
the best existence accuracy of 25.00% and 37.00%
for M = 10, N = 2 and M = 1, N = 4 samples,
respectively.

The performance of open-source models fall
behind in multi-needle negative samples, with
mPLUG-Owl-v2 and IDEFICS2-8B performing
better than others in both K = 2 and K = 5 set-
tings.

Results on Multi-Needle Individual Samples.
Table 13, Table 14, Table 15, and Table 16 show
the individual accuracy for multi-needle samples
defined in Appendix B. Gemini Pro 1.5 achieves
the highest exact accuracy for N = 2 and N = 8
samples in both Table 13 and Table 14 (single-
image inputs), while GPT-4o achieves the highest
exact accuracy in both Table 15 and Table 16 (multi-
image inputs).



Table 12: Existence Accuracy (%) for the 5-needle negative samples (the ground truth is “-1; -1; -1; -1; -1”). We
mark the best results with bold face. Note that the existence accuracy is measured by whether the model outputs
“-1” for all the needles. “-” means that the models do not support multi-image inputs.

Stitching 1× 1 2× 2 4× 4 8× 8

Context 10 imgs 1 img 10 imgs 1 img 10 imgs 1 img 10 imgs

API-based models

Claude 3 Opus 14.14 2.00 0.00 0.00 0.00 0.00 0.00
Gemini Pro 1.0 1.00 32.00 0.00 1.01 1.00 0.00 0.00
Gemini Pro 1.5 56.57 60.00 4.00 15.15 0.00 1.00 0.00
GPT-4V 73.63 65.96 8.99 17.00 0.00 0.00 0.00
GPT-4o 58.00 67.00 25.00 37.00 0.00 2.00 0.00

Open-source models

CogVLM-17B - 0.00 - 0.00 - 0.00 -
CogVLM2-LLaMA-3 - 0.00 - 0.00 - 0.00 -
Fuyu-8B 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mPLUG-Owl-v2 40.00 5.00 2.00 5.00 3.00 2.00 3.00
InstructBLIP-Vicuna-13B - 0.00 - 0.00 - 0.00 -
InstructBLIP-Flan-T5-XXL - 0.00 - 0.00 - 0.00 -
IDEFICS2-8B 29.00 0.00 12.00 0.00 0.00 0.00 0.00
LLaVA-LLaMA-3 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 13: Individual Accuracy (%) in the three metrics for the 2-needle M = 1 samples. We mark the best results
with bold face. The index accuracy is not always 100 % because the model can fail to output the correct image
index “1”.

Stitching 2× 2 4× 4 8× 8

Metrics Index Exact Index Exact Index Exact

API-based models

Claude 3 Opus 82.01 49.74 55.62 10.00 49.67 2.61
Gemini Pro 1.0 89.34 30.96 67.25 9.36 25.38 1.54
Gemini Pro 1.5 97.47 93.43 92.00 42.50 89.00 26.00
GPT-4V 94.85 79.90 97.00 56.00 96.70 5.49
GPT-4o 96.28 86.17 96.81 74.47 89.69 12.37

Open-source models

CogVLM-17B 0.00 0.00 0.00 0.00 0.00 0.00
CogVLM2-LLaMA-3 0.00 0.00 0.00 0.00 0.00 0.00
Fuyu-8B 79.00 0.00 35.00 0.00 13.86 0.00
mPLUG-Owl-v2 41.77 1.27 14.75 0.00 16.03 0.00
InstructBLIP-Vicuna-13B 0.00 0.00 0.00 0.00 4.00 0.00
InstructBLIP-Flan-T5-XXL 98.32 24.37 100.00 4.00 75.00 4.00
IDEFICS2-8B 23.08 0.96 84.40 0.00 14.00 0.00
LLaVA-LLaMA-3 0.00 0.00 13.00 1.50 25.50 0.50



Table 14: Individual Accuracy (%) in terms of the three metrics for the 5-needle M = 1 samples. We mark the best
results with bold face. The index accuracy is not always 100 % because the model can fail to output the correct
image index “1”.

Stitching 2× 2 4× 4 8× 8

Metrics Index Exact Index Exact Index Exact

API-based models

Claude 3 Opus 80.20 46.40 84.16 14.20 80.87 1.74
Gemini Pro 1.0 58.60 15.60 28.80 5.40 10.80 0.20
Gemini Pro 1.5 98.20 76.55 98.40 27.80 95.40 25.00
GPT-4V 86.45 70.11 92.45 45.10 91.31 6.26
GPT-4o 88.34 71.72 94.83 50.43 92.18 14.81

Open-source models

CogVLM-17B 0.00 0.00 0.00 0.00 2.55 0.00
CogVLM2-LLaMA-3 2.42 0.81 7.72 0.00 6.17 0.00
Fuyu-8B 80.00 0.00 26.00 0.00 10.00 0.00
mPLUG-Owl-v2 30.53 0.76 32.88 0.00 18.18 0.00
InstructBLIP-Vicuna-13B 2.00 0.00 5.56 0.00 5.77 0.00
InstructBLIP-Flan-T5-XXL 88.89 0.00 60.48 0.00 62.50 0.00
IDEFICS2-8B 26.42 4.88 51.85 1.85 82.00 0.00
LLaVA-LLaMA-3 30.00 8.00 30.00 1.60 54.60 1.40

Table 15: Individual Accuracy (%) in terms of the three metrics for the 2-needle M = 10 samples. We mark the
best results with bold face.

Stitching 1× 1 2× 2 4× 4 8× 8

Metrics Index Exact Index Exact Index Exact Index Exact

API-based models

Claude 3 Opus 69.95 66.12 7.28 2.65 3.82 0.64 3.64 0.00
Gemini Pro 1.0 17.68 7.32 10.06 5.33 2.19 0.00 4.96 0.83
Gemini Pro 1.5 90.82 90.31 57.00 48.50 18.32 8.38 2.53 0.00
GPT-4V 71.58 68.85 50.00 28.82 22.42 6.06 11.18 0.00
GPT-4o 94.82 93.26 88.89 72.49 40.59 18.82 19.21 1.69

Open-source models

Fuyu-8B 4.00 0.00 11.00 0.00 4.81 0.00 2.00 0.00
mPLUG-Owl-v2 1.68 0.84 1.64 0.00 7.69 0.00 4.55 0.00
IDEFICS2-8B 3.00 0.00 4.95 0.00 0.00 0.00 3.00 0.00
LLaVA-LLaMA-3 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00



Table 16: Individual Accuracy (%) in terms of the three metrics for the 5-needle M = 10 samples. We mark the
best results with bold face.

Stitching 1× 1 2× 2 4× 4 8× 8

Metrics Index Exact Index Exact Index Exact Index Exact

API-based models

Claude 3 Opus 72.18 71.97 9.16 2.65 10.30 0.21 6.11 0.00
Gemini Pro 1.0 21.20 12.00 12.40 3.00 11.16 0.44 7.44 0.00
Gemini Pro 1.5 94.75 78.79 58.40 35.20 20.59 7.86 10.61 0.41
GPT-4V 70.83 68.33 43.86 25.23 19.10 4.94 9.98 0.42
GPT-4o 95.13 91.81 86.47 56.14 42.71 19.89 15.09 0.26

Open-source models

Fuyu-8B 14.00 0.00 9.00 0.00 13.00 0.00 8.00 0.00
mPLUG-Owl-v2 4.40 0.00 7.47 0.57 8.15 0.00 5.42 0.00
IDEFICS2-8B 0.00 0.00 0.83 0.00 0.00 0.00 0.00 0.00
LLaVA-LLaMA-3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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