
Supplementary Materials
for Collaborative Recurrent Autoencoder

Hao Wang, Xingjian Shi, Dit-Yan Yeung
Hong Kong University of Science and Technology
{hwangaz,xshiab,dyyeung}@cse.ust.hk

1 Learning Beta-Pooling

As mentioned in the paper, fa,b({(h(j)
t ; s

(j)
t)}t) is the result of beta-pooling. The cumulative

distribution function of the beta distribution F (x; a, b) = B(x;a,b)
B(a,b) = Ix(a, b), where B(x; a, b) =∫ x

0
ta−1(1− t)b−1dt is the incomplete beta function and the denominator B(a, b) = Γ(a+b)

Γ(a) Γ(b) . Γ(·)
is the gamma function and Ix(a, b) is also called the regularized incomplete beta function. If we
denote φ

(j)
t = (h

(j)
t ; s

(j)
t) for t = 1, . . . , Tj and φ

(j)
t = (h

(j)
t+1; s

(j)
t+1) for t = Tj + 1, . . . , 2Tj , we

have fa,b({(h(j)
t ; s

(j)
t)}t) =

2Tj∑
t=1

(I t
2Tj

(a, b)− I t−1
2Tj

(a, b))φt. Written this way, we can evaluate the

gradient of L with respect to a and b and use gradient-based methods to learn them. To illustrate it
more clearly, if we take λs to positive infinity, fix b = 1 and try to learn the optimal value of a, we
can maximize the following joint log-likelihood:

L =−
∑
i,j

Cij

2
(Rij − uT

i vj)
2 − λv

2

∑
j

‖vj − tanh(W1

2Tj∑
t=1

[I t
2Tj

(a, 1)− I t−1
2Tj

(a, 1)]φt + b1)‖22

+
∑
j

2Tj+1∑
t=Tj+2

H(e
(j)
t−Tj−1, softmax(Wgh

(j)
t + bg))−

λu

2

∑
i

‖ui‖22 −
λw

2
g(W+).

Note that H(·, ·) denotes the cross-entropy loss for generating words from Mult(softmax(Wgh
(j)
t +

bg)). The term −λw

2 g(W+) corresponds to the prior of all weights and biases. Using the property of
the regularized incomplete beta function that Ix(a, 1) = xa, the joint log-likelihood can be simplified
to

L =− λv

2

∑
j

‖vj − tanh(W1

2Tj∑
t=1

[(
t

2Tj
)
a

− (
t− 1

2Tj
)
a

]φt + b1)‖22 −
λu

2

∑
i

‖ui‖22

−
∑
i,j

Cij

2
(Rij − uT

i vj)
2 +

∑
j

2Tj+1∑
t=Tj+2

H(e
(j)
t−Tj−1, softmax(Wgh

(j)
t + bg))−

λw

2
g(W+),

where a only appears in the exponents of (t
2Tj

)a and (t−1
2Tj

)a, which means we can easily get the
gradient of L with respect to a using the chain rule. After each epoch or minibatch, a can be updated
based on the gradient with the same learning rate.

2 Qualitative Comparison

In order to gain a better insight into CRAE, we train CRAE and CDL in the sparsest setting (P = 1)
with dataset CiteULike and use them to recommend articles for two example users. The corresponding
articles for the target users in the training set and the top 10 recommended articles are shown in

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Table 1: Qualitative comparison between CRAE and CDL

the rated article Bayesian adaptive user profiling with explicit and implicit feedback
User I (CRAE) in user’s lib?

top 10 articles

1. Incorporating user search behavior into relevance feedback no
2. Query chains: learning to rank from implicit feedback yes
3. Implicit feedback for inferring user preference: a bibliography yes
4. Modeling user rating profiles for collaborative filtering no
5. Improving retrieval performance by relevance feedback no
6. Language models for relevance feedback no
7. Context-sensitive information retrieval using implicit feedback yes
8. Implicit user modeling for personalized search yes
9. Model-based feedback in the language modeling approach to information retrieval yes
10. User language model for collaborative personalized search yes
User I (CDL) in user’s lib?

top 10 articles

1. Implicit feedback for inferring user preference: a bibliography yes
2. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales no
3. A knowledge-based approach for interpreting genome-wide expression profiles no
4. A tutorial on particle filters for online non-linear/non-gaussian Bayesian tracking no
5. Query chains: learning to rank from implicit feedback yes
6. Mapreduce: simplified data processing on large clusters no
7. Correlating user profiles from multiple folksonomies no
8. Evolving object-oriented designs with refactorings no
9. Trapping of neutral sodium atoms with radiation pressure no
10. A scheme for efficient quantum computation with linear optics no

the rated article Taxonomy of trust: categorizing P2P reputation systems
User II (CRAE) in user’s lib?

top 10 articles

1. Effects of positive reputation systems no
2. Trust in recommender systems yes
3. trust metrics in recommender systems no
4. The Structure of Collaborative Tagging Systems no
5. Effects of energy policies on industry expansion in renewable energy no
6. Limited reputation sharing in P2P systems yes
7. Survey of wireless indoor positioning techniques and systems no
8. Design coordination in distributed environments using virtual reality systems no
9. Propagation of trust and distrust yes
10. Physiological measures of presence in stressful virtual environments no
User II (CDL) in user’s lib?

top 10 articles

1. Trust in recommender systems yes
2. Position Paper, Tagging, Taxonomy, Flickr, Article, ToRead no
3. A taxonomy of workflow management systems for grid computing no
4. Usage patterns of collaborative tagging systems no
5. Semantic blogging and decentralized knowledge management no
6. Flickr tag recommendation based on collective knowledge no
7. Delivering real-world ubiquitous location systems no
8. Shilling recommender systems for fun and profit no
9. Privacy risks in recommender systems no
10. Probabilistic reasoning in intelligent systems networks of plausible inference no

Table 1. Note that in the sparsest setting the recommendation task is extremely challenging since
there is only one single article for each user in the training set.

As we can see, CRAE successfully identified User I as a researcher working on information retrieval
with interest in user modeling using user feedback. Consequently, CRAE achieves a high precision
of 60% by focusing its recommendations on articles about information retrieval, user modeling, and
relevance feedback. On the other hand, the topics of articles recommended by CDL span from visual
tracking (Article 4) to bioinformatics (Article 3) and programming language (Article 8). One
possible reason is that CDL uses the bag-of-words representation as input and consider each word
separately without taking into account the local context of words. For example, looking into CDL’s
recommendations more closely, we can find that Article 3 (on bioinformatics) and Article 4 (on
visual tracking) are actually irrelevant to the training article ‘Bayesian adaptive user profiling with
explicit and implicit feedback’. CDL probably recommends Article 3 because the word ‘profiles’
in the title overlaps with the article in the training set. The same thing happens for Article 4 with a
word ‘Bayesian’. With the recurrent learning in CRAE, a sequence is modeled as a whole instead of
separate words. As a result, with the local context of each word taken into consideration, CRAE can
recognize the whole phrase ‘user profiling’, rather than ‘user’ or ‘profiling’, as a theme of the article.

A similar phenomenon is found for User II with the article ‘Taxonomy of trust: categorizing P2P
reputation systems’. CDL’s recommendations bet on the single word ‘systems’ while CRAE identified
the article to be on trust propagation from the words ‘trust’ and ‘P2P’. In the end, CRAE achieves a
precision of 30% and CDL’s precision is 10%.

2

0 0.5 1
0

50

100

150

200

250

(a)
0 0.5 1

0

5

10

15

20

25

(b)
0 0.5 1

0

2

4

6

8

10

(c)
0 0.5 1

0

0.5

1

1.5

2

(d)
0 0.5 1

0

5

10

15

(e)
0 0.5 1

0

2

4

6

8

10

(f)
0 0.5 1

0

5

10

15

20

25

(g)
0 0.5 1

0

50

100

150

200

250

(h)
Figure 1: The shape of the beta distribution for different a and b (corresponding to Table 2).

Table 2: Recall@300 for beta-pooling with different hyperparameters

a 31112 311 1 1 0.4 10 400 40000
b 40000 400 10 1 0.4 1 311 31112

Recall 12.17 12.54 10.48 11.62 11.08 10.72 12.71 12.22

3 Motivation of Beta-Pooling

The function fa,b({(h(j)
t ; s

(j)
t)}t) is to pool the output states h

(j)
t and the cell states s

(j)
t of 2Tj

steps (a 2KW -by-2Tj matrix) into a single vector of length 2KW . If we denote the cumulative
distribution function of the beta distribution as F (x; a, b), φ(j)

t = (h
(j)
t ; s

(j)
t) for t = 1, . . . , Tj , and

φ
(j)
t = (h

(j)
t+1; s

(j)
t+1) for t = Tj + 1, . . . , 2Tj , then we have

fa,b({(h(j)
t ; s

(j)
t)}t) =

2Tj∑
t=1

(F (
t

2Tj
, a, b)− F (

t− 1

2Tj
, a, b))φt.

Note that a and b are hyperparameters here. In a generalized setting, they can be learned automatically.
Essentially the motivation of beta-pooling is to handle the variable length for different sequences
using one unified distribution.

When a = 2 and b = 3, the beta-pooling is close to average pooling but with larger weights to the
left of the center (the bottleneck). Following the generative process, the output h(j)

t and cell states
s

(j)
t of each word are concatenated into (h

(j)
t ; s

(j)
t). For each sequence, (h

(j)
t ; s

(j)
t) of all timesteps

are beta-pooled into a vector of length 2KW . The vector is then further encoded into the vector γj
of length K, which is used to guide the CF for the rating matrix. Since the information flows in
both ways, the rating matrix can, in return, provide useful information when the wildcard denoising
recurrent autoencoder tries to learn to fill in the blanks. This two-way interaction enables both tasks
(recommendation task and sequence generation task) to benefit from each other and results in more
effective representation θj for each item.

Note that the compression layer and the beta-pooling share the same weights and biases. If the
hyperparameters of beta-pooling are fixed so that Beta(a, b) peaks slightly to the left of x = 0.5, the
generation of γj in the generative process is equivalent to directly setting γj = tanh(θj) where θj
is the compressed representation we get from the compression layer. For example, Beta(a, b) peaks
slightly to the left of x = 0.5 (near x = 7

16) when a = 7778, b = 10000, and Tj = 4. The only
time step that interacts with the rating matrix is the one when t = 4, which is encoded into θj and
connected to the item latent vector vj .

4 Experiments on Beta-Pooling and Wildcard Denoising

As mentioned in the paper, beta-pooling is able to pool a sequence of 2Tj vectors into one single
vector of the same size. Note that Tj here can vary for different j. Hyperparameters a and b control
the behavior of beta-pooling. When a = b = 1, beta-pooling is equivalent to temporal average
pooling that takes the average of the 2Tj vectors. In an extreme case, a and b can be set such that the
pooling result is equal to one of the 2Tj vectors (e.g., the Tj-th vector). Figure 1 shows the shape
of the beta distribution for different a and b. Table 2 shows the corresponding recall for different
beta distributions in CiteULike. As we can see, the average pooling in Figure 1(d) and the pooling
with an inverted bell curve in Figure 1(e) perform poorly. On the other hand, distributions in Figure
1(a), (b), (g), and (h) yield the highest accuracy, which means most information concentrates near the

3

10
−3

10
−2

10
−1

10
0

10
1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

λv

R
ec

al
l

M=300
M=200
M=100

Figure 2: The recall@M for different λv .

bottleneck (middle) of DRAE. Among them, the distributions in Figure 1(b) and (g) outperform those
in Figure 1(a) and (h). This shows that simply setting the pooling result to be the middle vector is not
good enough and an aggregation of vectors near the middle would be a better choice. Comparing
distributions in Figure 1(b) and (g), it can be seen that the latter slightly outperforms the former,
probably because there are no input words in the decoder part of DRAE (as shown in the graphical
model of CRAE), which makes the hidden and cell states in the decoder part more representative.
Similar phenomena happen for Figure 1(a), (c), (f), and (h).

Note that since CRAE is a joint model, the information flows both ways through beta-pooling. For
example, when a = 400 and b = 311, the item representations used for recommendation mostly
come from the cell and output states near the bottleneck and in return, the rating information affects
the learning of DRAE mainly through the cell and output states near the bottleneck.

As mentioned in the paper, for the wildcard denoising scheme, we find that in CiteULike, CRAE
performs best with a wildcard denoising rate of 0.4, achieving a recall@300 of 12.71% while the
number for CRAE with conventional denoising [3] (dropping words completely) is 10.53% (slightly
better than CDL). For reference, the recall of CRAE without any denoising is 9.14%. Similar
phenomena are found in Netflix.

Note that DRAE is a much more general model than RNN autoencoders like [2, 1]. We also try
reversing the order of each sequence in the decoder RNN as in [2, 1], but the performance only
changes slightly.

5 Hyperparameters

We provide more details on the hyperparameters in this section.

5.1 Hyperparameter Settings

The vocabulary size S (with the word 〈wildcard〉 included) is 15,050 and 17,949 for CiteULike and
Netflix respectively. For CMF and SVDFeature, optimal regularization hyperparameters are used
for different P . The learning rate is set to 0.005 for SVDFeature. For DeepMusic, we find that the
best performance is achieved using a CNN with two convolutional layers. For CTR, we find that
it can achieve good prediction performance when λu = 0.1, λv = 10, and K = 50. For CDL, we
use similar hyperparameters as mentioned in [5]. The denoising rate is set to 0.3. Dropout rate, λu,
λv, and λn are set using the validation sets. For the sequence generation task, we postprocess the
generated sequences by deleting consecutive repeated words (e.g., the word ‘like’ in the sentence ‘I
like like this idea’), as often done in RNN-based sentence generation models.

5.2 Hyperparameter Sensitivity

Figure 2 shows the recall@M for CiteULike when λv is from 0.001 to 10 (P = 5). As mentioned in
the paper, when λv � 1 CRAE degenerates to a two-step model with no joint learning on the content
sequences and ratings. If λv � 1 the decoder side of CRAE will essentially vanish. Apparently the
performance suffers a lot in both extremes, which shows the effectiveness of joint learning in the full
CRAE model.

4

6 Robust Nonlinearity on Distributions

Different from [5], nonlinear transformation is performed after adding the noise with precision λs. In
this case, the input of the nonlinear transformation is a distribution rather than a deterministic value,
making the nonlinearity more robust than in [5] and leading to more efficient and direct learning
algorithms than CDL.

Consider a univariate Gaussian distribution N (x|µ, λ−1
s) and the sigmoid function σ(x) =

1
1+exp(−x) , the expectation:

E(x) =

∫
N (x|µ, λ−1

s)σ(x)dx

≈
∫
N (x|µ, λ−1

s)Φ(ξx)dx

= Φ(ξκ(λs)µ) = σ(κ(λs)µ), (1)

where the probit function Φ(x) =
∫ x
−∞N (θ|0, 1)dθ, κ(λs) = (1 + ξ2λ−1

s)−
1
2 , and Φ(ξx), with

ξ2 = π
8 , is to approximate σ(x) by matching the slope at the origin. Equation (1) holds because the

convolution of a probit function with a Gaussian distribution is another probit function. Similarly, we
can approximate σ(x)2 with σ(ρ1(x+ ρ0)) by matching both the value and the slope at the origin,
where ρ1 = 4− 2

√
2 and ρ0 = − log(

√
2 + 1). Hence the variance

D(x) ≈
∫
N (x|µ, λ−1

s) ◦ Φ(ξρ1(x+ ρ0))dx− E(x)2

= σ(
ρ1(µ+ ρ0)

(1 + ξ2ρ2
1λ
−1
s)1/2

)− E(x)2 ≈ λ−1
s , (2)

where we use λ−1
s to approximate D(x) for computational efficiency. Using Equation (1) and (2),

the Gaussian distribution in for generating st can be computed as:

N (σ(hft−1)� st−1 + σ(hit−1)� σ(at−1), λ−1
s IKW

)

≈ N (σ(κ(λs)h
f

t−1)� st−1 + σ(κ(λs)h
i

t−1)� σ(κ(λs)at−1), λ−1
s IKW

), (3)

where the superscript (j) is dropped for clarity. We use overlines (e.g., at−1 = Yext−1 +Weht−1 +
be) to denote the mean of the distribution from which a hidden variable is drawn. By applying
Equation (3) recursively, we can compute st for any t. Similarly, since tanh(x) = 2σ(2x)− 1, we
have:

E(x) =

∫
N (x|µ, λ−1

s) tanh(x)dx

≈ 2σ(x(0.25 + ξ2λ−1
s)−

1
2)− 1, (4)

which could be used to approximate h
(j)
t ∼ N (tanh(s

(j)
t)� σ(hot−1

(j)), λ−1
s IKW

). This way the
feedforward computation of DRAE would be seamlessly chained together, leading to more efficient
learning algorithms than the layer-wise algorithms in [5].

7 Datasets

We use two datasets from different real-world domains, one from CiteULike 1 and the other from
Netflix. The first dataset, CiteULike, is from [4] with 5,551 users and 16,980 items (articles). The
titles of the articles are used as content information (sequences of words) in our model. The second
dataset, Netflix, consists of both movie ratings from the users and the plots (content information) for
the movies. After removing users with less than 3 positive ratings (following [5], ratings larger than 3
are regarded as positive ratings) and movies without plots, we get 407,261 users, 9,228 movies, and
15,348,808 ratings in the final dataset.

1CiteULike allows users to create their own collections of articles. There are abstract, title, and tags for each
article. More details about the CiteULike data can be found at http://www.citeulike.org.

5

http://www.citeulike.org

References
[1] N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsupervised learning of video representations using

lstms. In ICML, 2015.

[2] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In NIPS, 2014.

[3] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising autoencoders:
Learning useful representations in a deep network with a local denoising criterion. JMLR, 11:3371–3408,
2010.

[4] C. Wang and D. M. Blei. Collaborative topic modeling for recommending scientific articles. In KDD, 2011.

[5] H. Wang, N. Wang, and D. Yeung. Collaborative deep learning for recommender systems. In KDD, 2015.

6

	Learning Beta-Pooling
	Qualitative Comparison
	Motivation of Beta-Pooling
	Experiments on Beta-Pooling and Wildcard Denoising
	Hyperparameters
	Hyperparameter Settings
	Hyperparameter Sensitivity

	Robust Nonlinearity on Distributions
	Datasets

