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Poor medication adherence is a major healthcare problem, 
contributing to 10% of hospitalizations, 125,000 deaths per 
year and up to $290 billion in annual cost in the United States 

alone1,2. A crucial step toward achieving medication adherence is 
ensuring proper MSA—that is, ensuring that patients take medica-
tions at the prescribed time and use the proper self-administration 
technique. When patients fail to perform MSA properly, the net 
result is that the medication is not delivered to its intended action 
site, causing failures in managing the condition3. Unfortunately, 
MSA errors are common, particularly in chronic diseases where up 
to 50% of patients do not take medications as prescribed4,5. The prob-
lem is exacerbated when medication delivery requires devices such 
as insulin pens or inhalers. MSA errors associated with medication 
delivery devices (for example, not shaking the inhaler before use or 
not priming the insulin dose) result in administration failures, sub-
sequent high levels of non-adherence, reduced disease control and 
unscheduled use of healthcare resources6–9. Physicians report that 
up to 70% of their patients do not take their insulin as prescribed6,7. 
Similarly, over 50% of patients who use inhalers do so erroneously 
regardless of the inhalation device used8. These statistics are alarm-
ing given that hundreds of millions of patients worldwide depend 
on these devices for their medication administration9,10.

Addressing the above problems requires adequately assessing 
patients’ MSA and detecting MSA errors. Existing solutions to 
assess MSA typically require direct observation by health profes-
sionals—that is, a clinician or pharmacist watches the patient as she 
uses her inhaler or insulin pen and guides her through the proper 
administration technique. For example, the clinician would explain 
to the patient that she needs to shake the inhaler, fully exhale, inhale 
a dose and hold her breath for 10 s before exhaling. The clinician 
would also watch the patient performing these steps and alert her 
if she fails to follow the proper administration technique. Although 
this approach can be used in the clinic, most MSA errors occur at 
home and away from the observation of a clinician. Furthermore, 
patients’ performance in front of a clinician might be unrepre-
sentative of their actual MSA, as patients tend to perform better 

when assessed by a clinician, a phenomenon known as ‘white-coat 
compliance’11. Even when patients receive initial training on their 
devices by a clinician, MSA errors occur over time due to forgetful-
ness or recklessness in adhering to the prescribed administration 
time, frequency or technique12. As a result, many MSA errors end 
up undetected until they manifest as serious health problems or 
admissions to the emergency room12.

This study was motivated by the question of whether we could 
use AI to assist with the observation of patients at home and 
provide a continuous assessment of their MSA. We present an 
AI-based solution that achieves this goal in an accurate, efficient 
and cost-effective manner. Our solution avoids cameras, which 
many patients find to be intrusive when deployed in their homes13. 
Instead, our solution uses a Wi-Fi-like sensor deployed in patient 
homes. (The sensor transmits signals around the Wi-Fi frequency 
range using the frequency-modulated continuous-wave (FMCW) 
technique. A detailed description of the radio sensor can be found 
in the Methods section.) The sensor transmits a very low-power 
wireless signal (1,000 times lower power than standard Wi-Fi), and 
our system analyzes the reflections of the signal from the environ-
ment using AI techniques. Because up to 60% of the human body is 
water, it reflects the surrounding radio signals and modulates them 
with the person’s movements14. Past work has shown that such radio 
reflections can be used to capture breathing and heart rate, detect 
falls and monitor sleep15–17. In this study, we focused on movements 
associated with MSA events. Our AI system, embedded in the sen-
sor, analyses the radio reflections from the environment to track 
the specific movements associated with MSA and to detect when 
a patient administers her medication using an inhaler or insulin 
pen. It further examines the wireless reflections to detect whether 
the patient has followed the required steps of using the medication 
device and generates an alert if the patient fails to follow the proper 
technique (for example, forgot to prime her insulin pen or shake her 
inhaler). This AI-based solution works in a contactless and passive 
manner, introducing no burden on the patient, caregiver or health 
personnel.
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Figure 1 illustrates a use case of our AI system at home, where 
it assesses the individual’s MSA with an inhaler. The wireless sen-
sor is mounted on the wall like a Wi-Fi box (Fig. 1a). There is no 
need for cameras, wearable sensors or any additional smart devices. 
The wall-mounted sensor analyzes the surrounding radio sig-
nal using AI methods. In this case, it would detect an instance of  
MSA using an inhaler and document the corresponding time.  
The AI solution also tracks the motion of the person and detects 
that the person shook the device, exhaled before use and, finally, 
inhaled a dose (Fig. 1b–d), which are required steps for MSA with 
an inhaler. An example output of our system is available in the 
Supplementary Video.

To build the AI-based solution, we designed a study where health 
professionals and the AI-based solution simultaneously observe 
MSA events with insulin pens and inhaler devices. To emulate 
real-world standard practice for first-time users of these medica-
tions, participants were trained by a pharmacist to perform MSA 
according to current guidelines and recommendations18,19 and 
were then asked to demonstrate their MSA technique. During the 
experiment, human observers provided an MSA assessment that 
included the time window of each MSA event and the errors made 
during each event (if any). We used the MSA assessment provided 
by human observers to train and evaluate our AI algorithm. In total, 
we collected a large dataset that consists of 47,788 examples, where 
each example is a 2-min recording of radio signals. This dataset 
has 1,203 positive examples of MSA events with insulin pens and 
inhaler devices; about half of these MSA events are performed with 
no errors, whereas the other half includes some errors (for exam-
ple, not shaking the inhaler before use or not holding one’s breath 
after inhaling the dose). The dataset also includes 46,585 negative 
MSA examples corresponding to common home activities that do 
not involve MSA, such as cooking, eating, typing and interacting 
with objects such as glasses, clothes, microwaves and hairdryers. 
The MSA examples in the dataset were performed by 107 healthy 
individuals whose ages varied from 18 to 72 years. The dataset was 
divided into training and testing sets that we used to train and eval-
uate the AI system, respectively.

Extensive experimental results (that are detailed in the Results 
section) demonstrate that our AI-based solution can reliably detect 
the occurrence of MSA events. Specifically, the AUC was 0.992 for 
detecting the use of an inhaler and 0.967 for detecting the use of an 
insulin pen. These results indicate that an AI system could be used 
at home to monitor whether patients use their inhalers and insulin 
pens following the prescribed time and frequency.

The experimental results also show that the AI solution can accu-
rately evaluate whether the individual correctly followed the required 
steps for administering her medication using an inhaler or insulin 
pen. Adherence to the proper steps while performing MSA is crucial 

for disease management and therapeutic effectiveness20. For exam-
ple, failure to follow the correct steps when using an insulin pen can 
lead to hyperglycemia or severe hypoglycemic episodes for patients 
with diabetes21,22. Similarly, failure to follow the recommended steps 
during inhaler administration contributes to symptom exacerbations 
and subsequent reduced quality of life for patients with asthma and 
patients with chronic obstructive pulmonary disease (COPD)23–25.  
Our results show that the AI system reliably detects both 1) miss-
ing key steps during the administration process (for example, not 
shaking the inhaler before use or not priming the insulin pen)  
and 2) patients not following duration-based requirements  
(for example, not holding the insulin pen after injection for 10 s).

Figure 2 illustrates how we envision such an AI-based solution 
that could be used in patient homes to help detect and address MSA 
errors. Our wireless sensor would be deployed in the patient’s home. 
The AI system would continuously and automatically analyze the 
radio signals and document MSA assessment results, which are 
uploaded over the internet and appended to the patient’s digital 
health record. Reminders will be sent to the patient if she fails to 
take the medication at the prescribed time. Authorized health pro-
fessionals will also be able to access these records via a web portal to 
learn which patients have difficulties with their MSA and the types 
of errors they experience. The health professionals can then reach 
out to the patient to corroborate these results and make a clini-
cal judgment (for example, whether more training on medication 
device administration is needed for the patient).

The recent outbreak of Coronavirus Disease 2019 (COVID-19) 
emphasizes the need for an automated and contactless solution for 
assessing MSA at home. The stay-at-home orders make it even more 
difficult to assess MSA through direct observation by health profes-
sionals. At the same time, individuals suffering from asthma, COPD 
and diabetes are at higher risk for severe illness from COVID-19 
(refs. 26,27); hence, it is even more critical to ensure that they take 
their medications with the proper administration technique. Our 
automated and contactless AI-based MSA assessment solution 
could help these vulnerable populations to control their chronic 
conditions. It also enables health professionals to remotely monitor 
the MSA of their patients, without risks of contagion.

Our work shows how advances in AI can address an important 
unmet need in healthcare6–10, by continuously monitoring the MSA 
of patients in their homes, detecting when patients fail to use their 
medication devices as prescribed and providing patients with feed-
back on their medication administration technique and whether 
it follows the required steps. More generally, the work opens the 
door to the integration of AI-based solutions in care management 
through in-home passive, unobtrusive and contactless patient mon-
itoring. Such integration could improve outcomes for patients and 
reduce the cost of healthcare.

Wireless sensor
with AI

a b c d

Fig. 1 | A use case illustration of the wireless Ai-based system to monitor individual MSA with an inhaler device. a, The wireless sensor is mounted on 
the wall, analyzing the surrounding radio signals using AI. The AI solution would detect when the person started to use an inhaler. b–d, Our AI solution 
also tracks the motion during the MSA event and detects that the person shook the device, exhaled before use and, finally, inhaled a dose. (We obtained 
informed consent from the participant for the use of his photographs.)
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Results
Our system was built and validated on a large dataset that consists 
of 47,788 examples of MSA events and home activities that do not 
involve MSA from 107 participants (53 females and 54 males), where 
each example is a recording of radio signals up to 2 min. A total 
of 40 different locations (such as offices, lounges, seminar rooms, 
kitchens and halls) were chosen to allow for variation between envi-
ronmental conditions. Participants were allowed to move freely in 
the space and perform the MSA at a location of their choice, within 
10 m from the wireless sensor. They were either standing or sitting 
when performing MSA and were allowed to pick any orientation 
with respect to the wireless sensor except for having their back to 
the sensor. For the MSA events with insulin pens, 150 events missed 
a common step, and 155 of them failed to comply with a specific 
duration requirement. For the MSA events with inhaler devices, 149 
of them missed a required step, and 168 of them failed to comply 
with duration requirements.

We trained a neural network model that takes a stream of radio 
signals as input. It first detects and tracks the location of each indi-
vidual in the environment. It then zooms in on the radio signals 
pertaining to each individual and predicts the occurrence of an 
MSA event. Instead of detecting the whole MSA event directly, our 
model detects the steps involved during administration and only 
claims an occurrence of an MSA event when multiple steps happen 
one after another. Detecting MSA events in this way improves our 
model’s robustness to variations among different people and enables 
the detection of MSA errors. Details of the model are described in 
the Methods section.

We performed K-fold cross-validation (K = 5) to evaluate 
our model. Specifically, the dataset was randomly split into five 
equal-sized subsets. A single fold was retained as test data, and 
the remaining four folds were used for training. This process was 
repeated five times, with each of the five folds used exactly once 
as the test data. The folds were divided such that participants who 
appear in the training data do not appear in the testing data and 
vice versa. To balance the number of participants across folds, we 
imposed no constraints on allocating sites to folds. We note that the 
cross-validation was not used for hyperparameter tuning.

Detection of MSA events. Our model detects MSA events in a 
sliding-window fashion. Specifically, it detects whether an MSA has 
happened for each 2-min window. To evaluate the performance of 
our model, we compared its predictions with ground truth provided 

by human annotations. Figure 3a,b show the receiver operating 
characteristic (ROC) curves for detecting MSA events with insu-
lin pens and inhaler devices, respectively. When computing sen-
sitivity and specificity, positive examples indicate MSA events, 
whereas negative examples indicate non-MSA events. Our system 
detected the occurrence of an insulin pen administration event with 
a sensitivity of 87.58% (95% confidence interval (CI), 84.7–90.0%) 
and a specificity of 96.06% (95% CI, 95.9–96.2%) and an AUC of 
0.967. Similarly, inhaler administration events were detected with 
a sensitivity of 91.08% (95% CI, 88.4–93.2%) and a specificity of 
99.22% (95% CI, 99.1–99.3%) and an AUC of 0.992. We note that 
the specificity or the false-positive ratio is computed for windows 
of non-MSA events such as eating, drinking or putting on clothes, 
not just any window of radio frequency (RF) signals. The number 
of false positives when considering any window of RF signals is sig-
nificantly smaller in real-world deployment. Specifically, we lever-
aged a dataset in which the radio was used to monitor patients with 
Parkinson’s disease and control individualss (that is, healthy indi-
viduals) for over 1 month28. Because none of the individuals in this 
dataset used inhalers or insulin pens, all detected MSA events could 
be considered false positives. We considered five homes from the 
study and used one full month of RF signals from each home. On 
average, the number of false positives over a whole month was 2.2 
for insulin pens and 6.6 for inhalers.

We also looked at errors that our model made when estimating 
the start time and end time of an MSA event. Figure 3c shows the 
box plots for the estimation errors, and Fig. 3d,e shows the cumu-
lative distribution functions of the absolute estimation errors. Our 
system made an unbiased (that is, median-unbiased) estimation of 
the start time and the end time for both devices. For the start time 
estimation, the 50th percentile error was 0.6 s and 0.4 s, whereas the 
90th percentile error was 2.0 s and 1.3 s for insulin pens and inhaler 
devices, respectively. Similarly, for the end time estimation, the 50th 
percentile error was 0.4 s and 0.3 s, whereas the 90th percentile error 
was 1.4 s and 0.9 s for insulin pens and inhaler devices, respectively. 
To put these errors in context, the average duration of MSA events 
based on human annotations was 65.27 ± 13.22 s for insulin pens 
and 34.30 ± 7.12 s for inhalers.

Evaluation of MSA techniques. To evaluate the MSA technique, 
we partitioned an MSA event into constituent key steps based on 
recommendations pertaining to insulin pen and inhaler device 
administration18,19. Figure 4 illustrates the details of these steps. 

Reminder

Automatic MSA records in the cloud

Health professional

Patient

Wireless sensor
with AI

Upload
Web portal

Help

Inhaler used at 3:55 PM
Technique was correct

Forgot to use inhaler at
9:00 PM

Inhaler used at 8:25 AM
Didn’t shake before use

Fig. 2 | Potential integration of our system into care management. Our wireless sensor with AI will continuously and automatically analyze the  
radio signals and document MSA assessment results in the cloud. The patient will receive reminders if she fails to take the medication at the  
prescribed time. Authorized health professionals can also access these records via a web portal to learn which patients have difficulties with their MSA 
and the types of errors they experience. The health professionals can reach out to the patient to corroborate these results and make a clinical judgment  
if necessary.
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Besides detecting the occurrence of an MSA event, our model also 
predicts the time window for each of the individual steps involved 
during the administration. To evaluate its performance, we com-
pared the predicted duration of each individual step with human 
annotations. Figure 5a shows the box plots of the duration estima-
tion errors for eight different steps during MSA events with insu-
lin pens. Similarly, Fig. 5b plots the duration estimation errors 
for six different steps during MSA events with inhaler devices. 

Our model made an unbiased duration estimation for all the  
steps, and the interquartile range was smaller than 1.5 s for all  
the steps.

Based on the detection of individual steps and estimation of 
their duration, we further looked at two common errors of MSA: 1)  
missing a key step during the administration process and 2) fail-
ure to comply with the duration requirements of device adminis-
tration. The above MSA errors occur frequently and are associated 
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Fig. 3 | evaluation results for the detection of MSA events with insulin pens and inhaler devices. a,b, ROC curves for detecting insulin (n = 47,205) and 
inhaler (n = 47,168) administration. ROC curves demonstrate the tradeoff between sensitivity and specificity as the detection thresholds are varied. The 
AUC is an aggregate measure of detection performance (a model whose predictions are 100% correct will have an AUC of 1.0). c, Distribution of the 
errors for start time and end time estimation (n = 620 for insulin pens and n = 583 for inhalers). On each box plot, the central line indicates the median, 
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Points beyond the whiskers are plotted individually using the ‘+’ symbol. d,e, Cumulative distribution functions (CDFs) of the absolute error for start time 
and end time estimation (n = 620 for insulin pens and n = 583 for inhalers).
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with poor disease control outcomes3,20,29. For example, studies have 
reported that 37% of patients fail to shake their inhalers29, and 
patients not holding their breath after inhalation was a prevalent 
(53%) error during inhalation device administration29.

MSA errors with a missing step considered in this study were 
not priming the insulin pen (Step 4) and not shaking the inhaler 
device before use (Step 2). These steps are crucial to make sure these 
devices deliver the medication at the right dose. Specifically, prim-
ing the insulin pen ensures an unobstructed and free flow of insu-
lin20, and shaking the inhaler ensures proper mixture of particles 
and consistent dose delivery23. Figure 5c,d show the ROC curves 
for detecting such errors during insulin and inhaler administration, 
respectively. Our system detected not priming the insulin pen with 
a sensitivity of 84.00% (95% CI, 76.9–89.2%) and a specificity of 
92.55% (95% CI, 89.7–94.7%) and an AUC of 0.905. Similarly, our 
system detected not shaking the inhaler device before use with a 
sensitivity of 96.64% (95% CI, 91.9–98.7%) and a specificity 94.47% 
(95%, CI 91.8–96.3%) and an AUC of 0.967.

To evaluate our system’s performance in detecting errors of 
failing to comply with duration requirements, we considered two 
duration-related common steps—namely, holding the insulin pen 
still for 10 s after injection (Step 6 of insulin administration) and 
holding one’s breath for 10 s after inhaling a dose (Step 4 of inhaler 
administration). We use the cutoff of 10 s base on clinical recom-
mendations20,23,30. Specifically, holding the insulin pen for 10 s after 
injection ensures no insulin leakage or dribbling20, and holding 
the breath after dose inhalation ensures adequate lung deposition, 
which occurs through sedimentation of particles23,30. Figure 5e 
and Fig. 5f show the ROC curves for detecting MSA errors when 
individuals failed to comply with the duration requirements dur-
ing insulin and inhaler administration, respectively. Our system 
detected not holding the insulin pen still for 10 s after injection with 
a sensitivity of 94.19% (95% CI, 88.9–97.1%) and a specificity of 
95.48% (95% CI, 93.1–97.1%) and an AUC of 0.981. Similarly, our 
system detected not holding breath after inhaling a dose with a sen-
sitivity of 89.88% (95% CI, 84.0–93.8%) and a specificity of 92.04% 
(95% CI, 88.9–94.4%) and an AUC of 0.953. This performance rose 
further for detecting significant deviations from the recommenda-
tions (for example, failing to hold breath/pen even for a few sec-
onds). For the insulin pen, the AUC increased to 0.986 and 0.993 for 
detecting durations shorter than 5 s and 3 s, respectively. Similarly, 
the AUC increased to 0.983 and 0.988 in the case of inhalers.

In Fig. 6 we show example outputs from our system. Figure 6a  
shows an example MSA event with the insulin pen. The top panel 
plots the predictions of our system on the time axis—that is, a 
detected MSA event with multiple boxes corresponding to all eight 
steps when using an insulin pen. The bottom panel shows the 
human annotation during the corresponding MSA event. Figure 
6b shows an example when the individual missed a key step dur-
ing the administration process. Note that the box corresponding to 
the step of priming the insulin dose (Step 4) is missing, and this 
error was successfully detected by our AI model. Figure 6c shows 
another insulin pen example where the individual failed to comply 
with administration duration requirements—namely, the individual 
failed to hold the pen for 10 s after injecting the dose. Again, our 
model was able to detect this error, as the detected step of holding 
the insulin pen after injection (Step 6) was much shorter than 10 s. 
Similarly, Fig. 6d–f show example outputs with inhalers.

Discussion
Here we described an AI-based solution for contactless at-home 
assessment of patient MSA using inhalers and insulin pens. Our 
solution is characterized by three properties: low overhead, infor-
mative and accurate. It is low overhead because it works in a pas-
sive and contactless manner without requiring patients or health 
professionals to observe, report or measure any parameters. It is 
informative because, in addition to detecting patient medication 
administration, it also assesses the patient’s self-administration 
technique and informs her of errors and omissions of required steps. 
It is also accurate as demonstrated through our empirical results.

We think that the above three properties are important for the 
success of an MSA assessment solution. Past solutions for assess-
ing MSA at home fall short of delivering all three properties. In 
particular, solutions that attach sensors to medication devices to 
monitor MSA31–33 can impose a new burden on the patient, as they 
require the patient to regularly charge or replace their battery and 
bring the devices in the vicinity of a smartphone so they can upload 
their data. Although such solutions can detect dose release, they 
lack information on whether the patient followed the proper MSA 
technique to ensure adequate dose delivery—that is, the sensor cap-
tures the actuation and movements of the medication device itself 
but cannot capture the patient’s actions and their sequence, which 
are crucial for correct MSA. To our knowledge, this paper is the 
first to introduce an automated solution for assessing an individual’s 
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Fig. 4 | Partitioning of key constituent steps of insulin pen and inhaler device self-administration enabling evaluation of administration technique. Based 
on recommendations pertaining to insulin pen and inhaler device administration, we partitioned an MSA event into eight steps and six steps for insulin and 
inhaler administration, respectively. (We obtained informed consent from the participant for the use of his photographs).
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MSA technique and whether it follows the proper steps. Being able 
to assess MSA techniques is essential because failures to follow the 
proper techniques are common and have been associated with high 
non-adherence levels and subsequent poor disease outcomes3,20,28,34.

Another feature of our approach is its ability to generalize to dif-
ferent types of insulin pens and inhalers. The neural network mod-
els used in this study support both reusable and disposable insulin 
pens and the widely used metered-dose inhalers, as the constituent 
key steps that our system learned are similar regardless of the type 
of insulin or the medication delivered by the inhaler. Specifically, 
in the case of insulin pens, our model is trained to support both 
reusable and disposable pens by considering the cartridge-loading 
step as optional. In the case of inhalers, our model is trained on 
the MSA steps recommended for the widely used metered-dose 
inhalers. Because the main difference between different types of 
metered-dose inhalers is the actual drug administered (for example, 
salbutamol, ipratropium ot fluticasone) rather than the adminis-
tration technique itself, our system works with all such inhalers. 
Furthermore, our model can be extended to work with dry powder 
inhalers, which do not require shaking before use. This can be done 
by using a flag to indicate that the patient uses a dry powder inhaler 

and, therefore, not declaring an MSA error when the shaking step 
is missed.

We think that the clinical implications of our system could be 
significant. We envision that this system will be able to provide con-
tinuous feedback for clinicians on their patients’ MSA. Based on 
the feedback from our system, health professionals can then make a 
clinical judgment (for example, whether more training and educa-
tion on medication device administration techniques is needed for 
the patient). Additionally, this system could contribute to patient 
empowerment and engagement in their health by giving them feed-
back about their MSA technique and allowing them to avoid com-
mon MSA errors.

Although our AI-based solution provides an important improve-
ment over the status quo, we also note that it has several limitations. 
First, our system was developed and tested with healthy individu-
als in laboratory conditions. We designed the experiment in this 
study to emulate the real-world scenarios of how patients use medi-
cation delivery devices after the initial training from pharmacists 
or other health professionals. Thus, we chose individuals without 
prior experience with the insulin pen and inhaler and had them 
trained by a pharmacist to use these devices. This also ensured that 
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our participants’ level of education and training in using medica-
tion devices was standardized, therefore mitigating reported barri-
ers associated with individuals’ lack of training and education when 
using an insulin pen and inhaler device3,35. We think that this study 
provides an important first step toward enabling automatic MSA 
assessment at home. We envision that future work would validate 
the system with actual patients in their homes and study the effect 
of having such a system for automatic at-home MSA assessment 
on medication adherence. Future work could also evaluate poten-

tial confounding factors that might affect MSA errors, such as the 
patient’s chronic conditions, dexterity issues, health literacy and 
education level.

Second, we focused on insulin pens and metered-dose inhalers 
and their common errors, but there are many other MSA devices 
and potential technique errors. Although this is a limitation of the 
specific neural network that we trained, the AI approach that we 
propose is general and can be adapted to other MSA devices and 
MSA errors.
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Third, the ability of our system to detect MSA events in various 
locations in the home is limited by the coverage area of the radio. 
The radio device that we used in this study can assess MSA events in 
locations up to 10 m from the device. This is usually enough to cover 
several rooms in a home. If desirable, however, the whole home can 
be covered by deploying multiple radio devices. Still, patients might 
take their medications outside the home (for example, at work), 
leading to some MSA events being missed. Even when MSA detec-
tion is incomplete, the system continues to be useful. Specifically, 
it would provide health professionals with a list of missing MSA 
events, which allows them to discuss this information with patients 
to clarify whether the missing MSA events are due to incomplete 
information or the patients indeed did not take their medication. 
Furthermore, it would detect MSA technique errors, which are 
typically repeated by patients, and today often go undetected until 
direct observation from clinicians or poor disease outcomes11,36.

Fourth, the system does not detect MSA events if the person has 
his back to the radio, because most of the RF signals are blocked 
by the person’s own body. Similarly to the previous limitation, this 
issue can be addressed by deploying a second radio in the environ-
ment with a different orientation.

Additionally, the exposition in this paper focused on scenarios 
where the house has a single person who uses an inhaler and/or 
insulin pen. For homes with multiple patients who use inhalers 
or insulin pens, a user identification system based on RF reflec-
tions37–40 can be employed to resolve the ambiguity. Such systems 
use RF signals to accurately identify a person from a small set of 
people—for example, other residents in a home or co-workers in an 
office scenario. Because we only require identification from others 
at home, their methods apply to this scenario.

In summary, we developed an AI system that can successfully 
detect MSA events and assess a patient’s MSA technique. Our system 
demonstrates how AI can be applied to ensure medication safety, 
specifically with device-based administration, in a manner that has 
minimal potential overhead for patients and health professionals.
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Methods
Experiment design. When designing the experiments in this study, we aimed to 
emulate the real-world scenarios of how patients use medication delivery devices. 
Patients typically receive training from pharmacists or other health professionals 
on how to use their medication delivery device when they are prescribed such 
medication for the first time41. To emulate the real-world scenarios, we chose 
individuals without prior experience with insulin pens and inhalers and had 
them trained by a pharmacist to use those devices. The pharmacist followed a 
standard procedure where he first taught the individual the MSA process and then 
asked the individual to demonstrate their MSA technique and ensured that the 
individual correctly simulated the administration of their insulin pen and inhaler 
device. After the initial training session, the individual performed MSA in front 
of a wireless sensor and a camera that recorded videos for annotation purposes. 
In addition to performing MSA, individuals were instructed to perform other 
activities, such as typing, cooking, eating and interacting with surrounding objects. 
We annotated the exact time window for every step involved in each MSA event 
and the types of errors that were made. To mitigate the imbalance between MSA 
events with and without errors and facilitate the development of AI models, we 
asked the individuals to purposely simulate errors during the experiment sessions. 
Note that, during both the initial training session and the later experiment session, 
all the MSA events were performed using placebo devices, and no medication dose 
was actually administered.

Individuals and dataset. A total of 107 healthy individuals (18–72 years of age) 
were recruited for this study. The individuals performed 1,203 positive examples of 
MSA events with insulin pens and inhaler devices at 40 different locations (offices, 
lounges, seminar rooms, kitchens, halls, etc). Positive MSA events were compared 
against a total of 46,585 instances of negative MSA examples corresponding to 
common activities that do not involve MSA. Of the 1,203 MSA events, 620 used 
insulin pens, and 583 used inhalers for administration. For the MSA events 
with insulin pens, 150 of them missed a common step, and 155 of them failed to 
comply with duration requirements. For the MSA events with inhaler devices, 149 
of them missed a common step, and 168 of them failed to comply with duration 
requirements. None of the MSA events simultaneously missed a step and failed to 
comply with duration requirements.

During the experiments, the individuals were allowed to move freely in 
the space and perform the MSA at a location of their choice, within 10 m from 
the wireless sensor. The individuals were recorded both in sitting and standing 
positions via the wireless sensor. They were allowed to pick any orientation with 
respect to the wireless sensor (that is, face the sensor or show their sides to it) 
except for having their back facing the sensor.

RF sensing technology. Recent advances in RF sensing have developed systems 
that can capture human motion and infer biometric information, such as 
respiration, heart rate, gait speed, mobility, sleep stages and human pose14–17,37,42–44. 
Similarly to this past work, we used a radio sensor that employs FMCW and 
antenna arrays. The system works by transmitting low-power RF signals (1,000 
times weaker than Wi-Fi) and receiving reflections from nearby people. Because up 
to 60% of the human body is water, it reflects the radio signals and modulates them 
with the person’s movements, capturing important information about the person’s 
MSA technique. The radio is equipped with vertical and horizontal antenna 
arrays, each of which has 12 antennas. It transmits an FMCW chirp sweeping the 
frequencies from 5.4 to 7.2 GHz. The combination of FMCW and antenna arrays 
allows the radio to separate RF reflections from different areas based on their 
distance (that is, range) and spatial direction (that is, angle of arrival) with respect 
to the radio sensor14,43. This property allows the system to separate reflections from 
different people and process them independently.

We processed the RF signal into three-dimensional (3D) tensors indicating the 
amount of RF reflection from each point in the 3D space43. We generated 30 such 
tensors (that is, frames) every second.

Building the AI-based model. Our AI-based model processes RF signals 
through three stages to detect and assess MSA events. The first stage uses a neural 
network model to localize and track people in the environment, zooming in on 
each individual while eliminating noise and interference from other people and 
objects in the environment. The second stage uses another neural network model 
to perform frame-wise prediction of MSA steps, where each frame is a snapshot 
of the 3D RF tensor at one point in time. Finally, the third stage decodes the 
frame-wise predictions into start time and end time of each MSA step and analyzes 
the sequence of steps to determine whether an MSA event has occurred. Below, we 
describe all three stages in detail.

Stage 1: The first stage of the processing takes a stream of radio signals as input 
and outputs bounding boxes43 representing the spatial locations of each individual. 
By focusing on RF reflections from the spatial locations indicated by the bounding 
boxes, our model zooms in on each individual while eliminating noise and 
interference from other people and objects in the environment. We used the same 
neural network as previous work43 to localize and track people in the environment. 
This neural network model uses a 12-layer ResNet to extract features from RF 
signals together with a region proposal network that outputs bounding boxes43.

Stage 2: The second stage takes the RF frames focused on a specific individual 
from the previous stage as input and outputs for each RF frame a probability score 
of the frame belonging to each of the MSA steps. The neural network used in this 
stage has a UNet structure45 with 3D convolutional layers. Specifically, it has eight 
residual blocks, each of which consists of three convolutional layers, along with 
group normalization layers and exponential linear unit layers46,47. It also interleaves 
four long short-term memory layers48 within the last four residual blocks to capture 
temporal information. This sub-network is trained using human annotations of 
MSA steps. The model is implemented in PyTorch. During training, the weights 
of the model are randomly initialized, and we use cross-entropy loss computed 
for each RF frame. Adam optimizer is used with a learning rate of 3 × 10−4. We 
use a batch size of 4 on four NVIDIA TITAN Xp graphical processing units with 
distributed data parallelization. The model is trained for 100,000 iterations with a 
10× learning rate decay after 20,000 and 50,000 iterations.

Stage 3: The third stage of the processing decodes the frame-wise MSA 
step probabilities to estimate the start time and end time of each MSA step and 
determine whether an MSA event has occurred. We adopt beam search decoding, 
which is widely used in speech and handwritten text recognition for decoding 
the output of neural network models49. At a high level, there is an analogy 
between recognizing a spoken word by detecting the sequence of its phonemes 
and detecting an MSA event by detecting the sequence of its steps (and their 
corresponding RF frames). The beam search decoding algorithm considers all the 
frames jointly and uses language models as prior knowledge to output a coherent 
sequence of characters/words as opposed to a greedy decoding scheme that 
decodes each frame independently. Similarly, the beam search decoding algorithm 
in our model uses priors of the transition probability between MSA steps and the 
step duration, which are based on the statistics of the training data. The beam 
search decoding also computes a score (that is, log likelihood) for the decoded 
results. The score is normalized by the duration of the detected MSA event, and 
our model rejects all MSA events if their final score is less than a threshold. (The 
threshold is set to 0.4, which balances sensitivity with specificity).

Statistical methods. To evaluate the performance of MSA event detection, we 
used the following metrics: sensitivity, specificity, ROC curves, AUC and the 
estimation error of start time and end time, with sample sizes as given. To evaluate 
the performance of MSA error detection, we used the following metrics: estimation 
error of step duration, sensitivity and specificity of MSA error detection, ROC 
curves and AUC.

Sensitivity and specificity are calculated as (TP: true positive; FN: false 
negative; TN: true negative; FP: false positive):

Sensitivity =

TP
TP + FN

,

Specificity =

TN
TN + FP

.

We plotted ROC curves that demonstrate the tradeoff between sensitivity and 
specificity, as the detection thresholds are varied. When reporting the sensitivity 
and specificity, we used a detection threshold of 0.6 for MSA event detecting, a 
detection threshold of 0.25 s for detecting missing steps and a detection threshold 
of 8 s for detecting the error of failing to comply with duration-based requirements. 
We followed standard procedures to calculate the 95% CI for sensitivity and 
specificity50. We also reported AUC, which is the area under the corresponding 
ROC curves showing an aggregate measure of detection performance.

We computed the error between the predicted start (or end) time and the 
ground truth start (or end) time of events as (ts: ground truth start time; te: ground 
truth end time; t̂s : predicted start time; t̂e : predicted end time):

errors =
∣∣t̂s − ts

∣∣ ,

errore =
∣∣t̂e − te

∣∣ .

The error of step duration estimation is computed as (d: ground truth  
duration; ˆd : predicted duration):

errord =

∣∣∣ˆd − d
∣∣∣ .

We reported the error of start/end time estimation and step duration 
estimation with box plots. For each box plot, the central line indicates the median, 
and the bottom and top edges of the box indicate the 25th and 75th percentiles, 
respectively. The whiskers extend to 1.5 times the interquartile range. Points 
beyond the whiskers are plotted individually using the ‘+’ symbol.

Human subject data. Our study was approved by the institutional review board 
of the Massachusetts Institute of Technology (protocol no. 1509173592). All 
individuals reviewed and signed consent forms before participating in our study.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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Data availability
De-identified data that support the findings of this study are available from the 
authors upon reasonable request and with a signed data use agreement. By signing 
the agreement, the requester agrees that the data 1) will be used only for research 
purposes and will not be used for any product-related effort and 2) will not be 
shared with a third party. Please contact rf-msa@csail.mit.edu for access.

code availability
Code that supports the findings of this study is available from the authors 
upon reasonable request and with a signed code use agreement. By signing the 
agreement, the requester agrees that the code 1) will be used only for research 
purposes and will not be used for any product-related effort and 2) will not be 
shared with a third party. Please contact rf-msa@csail.mit.edu for access.
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