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Abstract—While perception tasks such as visual object recognition and text understanding play an important role in human

intelligence, subsequent tasks that involve inference, reasoning, and planning require an even higher level of intelligence. The past few

years have seen major advances in many perception tasks using deep learning models. For higher-level inference, however,

probabilistic graphical models with their Bayesian nature are still more powerful and flexible. To achieve integrated intelligence that

involves both perception and inference, it is naturally desirable to tightly integrate deep learning and Bayesian models within a

principled probabilistic framework, which we call Bayesian deep learning. In this unified framework, the perception of text or images

using deep learning can boost the performance of higher-level inference and in return, the feedback from the inference process is able

to enhance the perception of text or images. This paper proposes a general framework for Bayesian deep learning and reviews its

recent applications on recommender systems, topic models, and control. In this paper, we also discuss the relationship and differences

between Bayesian deep learning and other related topics such as the Bayesian treatment of neural networks.

Index Terms—Artificial intelligence, data mining, Bayesian networks, neural networks, deep learning, machine learning

Ç

1 INTRODUCTION

DEEP learning has achieved significant success in many
perception tasks including seeing (visual object recogni-

tion), reading (text understanding), and hearing (speech rec-
ognition). These are undoubtedly fundamental tasks for a
functioning comprehensive artificial intelligence (AI) or data
engineering (DE) system. However, in order to build a real
AI/DE system, simply being able to see, read, and hear is far
from enough. It should, above all, possess the ability to think.

Take medical diagnosis as an example. Besides seeing vis-
ible symptoms (or medical images from CT) and hearing
descriptions from patients, a doctor has to look for relations
among all the symptoms and preferably infer the corre-
sponding etiology. Only after that can the doctor provide
medical advice for the patients. In this example, although
the abilities of seeing and hearing allow the doctor to acquire
information from the patients, it is the thinking part that
defines a doctor. Specifically, the ability to think here could
involve causal inference, logic deduction, and dealing with
uncertainty, which is apparently beyond the capability of
conventional deep learning methods. Fortunately, another
type of models, probabilistic graphical models (PGM),
excels at causal inference and dealing with uncertainty. The
problem is that PGM is not as good as deep learning models
at perception tasks. To address the problem, it is, therefore,
a natural choice to tightly integrate deep learning and PGM
within a principled probabilistic framework, which we call
Bayesian deep learning (BDL) in this paper.

With the tight and principled integration in BDL, percep-
tion tasks and inference tasks are regarded as awhole and can
benefit from each other. In the example above, being able to
see the medical image could help with the doctor’s diagnosis
and inference. On the other hand, diagnosis and inference can
in return help with understanding the medical image. Sup-
pose a doctor is not sure what a dark spot in a medical image
is. However, if she is able to infer the etiology of the symptoms
and disease, it can help her better decide whether the dark
spot is a tumor or not.

As another example, to achieve high accuracy in recom-
mender systems (RS) [1], [39], [40], [50], [67], we need to
fully understand the content of the items (e.g., documents
and movies) [46], analyze the profile and preferences of
users [70], [73], and evaluate the similarity among the users
[3], [11], [29]. Deep learning is good at the first subtask while
PGM excels at the other two. Besides the fact that better
understanding of item content would help with the analysis
of user profiles, the estimated similarity among users could
also provide valuable information for understanding item
content in return. In order to fully utilize this bidirectional
effect to boost recommendation accuracy, we might wish to
unify deep learning and PGM in one single principled prob-
abilistic framework, as seen in [67].

Besides recommender systems, the need for BDL may also
arise when we are dealing with the control of non-linear
dynamic systemswith raw images as input. Consider control-
ling a complex dynamical system according to the live video
stream received from a camera. This problem can be trans-
formed into iteratively performing two tasks, perception from
raw images and control based on dynamic models. The per-
ception task can be taken care of using multiple layers of sim-
ple nonlinear transformation (deep learning) while the
control task usually needs more sophisticated models like
hiddenMarkovmodels and Kalman filters [22]. The feedback
loop is then completed by the fact that actions chosen by the
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control model can affect the received video stream in return.
To enable an effective iterative process between the percep-
tion task and the control task, we need two-way information
exchange between them. The perception component would
be the basis on which the control component estimates its
states and the control component with a built-in dynamic
model would be able to predict the future trajectory (images).
In such cases, BDL is a suitable choice [69].

As mentioned in the examples above, BDL is particularly
useful for tasks that involve both understanding of content
(e.g., text, images, and videos) and inference/reasoning
among variables. In such complex tasks, the perception com-
ponent of BDL is responsible for the understanding of the
content, and the task-specific component (e.g., the control
component in dynamical systems) models the probabilistic
relationship among different variables. Furthermore, the
interaction between these two components creates synergy
and further boosts the performance.

Apart from the major advantage of BDL providing a
principled way of unifying deep learning and PGM, another
benefit comes from the implicit regularization built into
BDL. Through imposing a prior on hidden units, parameters
defining a neural network, or the model parameters specify-
ing the causal inference, to some degree BDL can avoid over-
fitting, especially when there is not sufficient data. Usually, a
BDL model consists of two components: (1) a perception com-
ponent that is a Bayesian formulation of a certain type of neu-
ral networks (NN) and (2) a task-specific component that
describes the relationship among different hidden or
observed variables using PGM. Regularization is crucial for
them both. Neural networks usually have large numbers of
free parameters that need to be regularized properly. Regu-
larization techniques such as weight decay and dropout [57]
are shown to be effective in improving performance of neural
networks and they both have Bayesian interpretations [15].
In terms of the task-specific component, expert knowledge
or prior information, as a kind of regularization, can be incor-
porated into the model through the prior we imposed to
guide themodel when data are scarce.

Yet another advantage of using BDL for complex tasks
(tasks that need both perception and inference) is that it pro-
vides a principled Bayesian approach of handling parame-
ter uncertainty. When BDL is applied to complex tasks,
there are three kinds of parameter uncertainties that need to be
taken into account:

1) Uncertainty about the neural network parameters.
2) Uncertainty about the task-specific parameters.
3) Uncertainty about the exchange of information

between the perception component and the task-spe-
cific component.

Through representing the unknown parameters using dis-
tributions instead of point estimates, BDL offers a promising
framework to handle these three kinds of uncertainty in a uni-
fied way. It is worth noting that the third uncertainty could
only be handled under a unified framework such as BDL. If
we train the perception component and the task-specific com-
ponent separately, it is equivalent to assuming no uncertainty
when exchanging information between the two components.

Of course, there are challenges when applying BDL to
real-world tasks. (1) First, it is nontrivial to design an efficient

Bayesian formulation of neural networks with reasonable
time complexity. This line of work has been pioneered by
[25], [41], [44], but it has not been widely adopted due to its
lack of scalability. Fortunately, some recent advances in this
direction [2], [9], [23], [34], [66] seem to shed light on the prac-
tical adoption of Bayesian neural networks (BNN).1 (2) The
second challenge is to ensure efficient and effective informa-
tion exchange between the perception component and the
task-specific component. Ideally both the first-order and sec-
ond-order information (e.g., the mean and the variance)
should be able to flow back and forth between the two com-
ponents. A natural way is to represent the perception compo-
nent as a PGM and seamlessly connect it to the task-specific
PGM, as done in [17], [64], [67].

In this paper, we aim to give a comprehensive overview
of BDL models for applications like recommender systems,
topic models (and representation learning), and control.
The rest of the paper is organized as follows: In Section 2,
we provide a review of some basic deep learning models.
Section 3 covers the main concepts and techniques for PGM.
These two sections serve as the background for BDL, and
the next section, Section 4, proposes a unified BDL frame-
work and surveys the BDL models applied to areas such as
recommender systems and topic models. Section 5 discusses
some future research issues and concludes the paper.

2 DEEP LEARNING

Deep learning normally refers to neural networks with more
than two layers. To better understand deep learning, here we
start with the simplest type of neural networks, multilayer
perceptrons (MLP), as an example to showhow conventional
deep learning works. After that, we will review several other
types of deep learningmodels based onMLP.

2.1 Multilayer Perceptron

Essentially a multilayer perceptron is a sequence of paramet-
ric nonlinear transformations. Suppose we want to train a
multilayer perceptron to perform a regression task which
maps a vector ofM dimensions to a vector ofD dimensions.
We denote the input as amatrix X0 (0 means it is the 0th layer
of the perceptron). The jth row of X0, denoted as X0;j�, is an
M-dimensional vector representing one data point. The tar-
get (the output we want to fit) is denoted as Y. Similarly Yj�
denotes a D-dimensional row vector. The problem of learn-
ing an L-layer multilayer perceptron can be formulated as
the following optimization problem:

min
fWlg;fblg

kXL � YkF þ �
X
l

kWlk2F

subject to Xl ¼ sðXl�1Wl þ blÞ; l ¼ 1; . . . ; L� 1

XL ¼ XL�1WL þ bL;

where sð�Þ is an element-wise sigmoid function for a matrix

and sðxÞ ¼ 1
1þexpð�xÞ. � is a regularization parameter and

k � kF denotes the Frobenius norm. The purpose of imposing
sð�Þ is to allow nonlinear transformation. Normally other

1. Here, we refer to Bayesian treatment of neural networks as
Bayesian neural networks. The other term, Bayesian deep learning, is
retained to refer to complex Bayesian models with both a perception
component and a task-specific component.
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transformations like tanhðxÞ and maxð0; xÞ can be used as
alternatives of the sigmoid function.

Here Xl (l ¼ 1; 2; . . . ; L� 1) is the hidden units. As we
can see, XL can be easily computed once X0, Wl, and bl

are given. Since X0 is given by the data, we only need to
learn Wl and bl here. Usually this is done using backpro-
pagation and stochastic gradient descent (SGD). The key
is to compute the gradients of the objective function
with respect to Wl and bl. If we denote the value of the
objective function as E, we can compute the gradients
using the chain rule as

@E

@XL
¼ 2ðXL � YÞ (1)

@E

@Xl
¼ @E

@Xlþ1
� Xlþ1 � ð1� Xlþ1Þ

� �
Wlþ1 (2)

@E

@Wl
¼ XT

l�1
@E

@Xl
� Xl � ð1� XlÞ

� �
(3)

@E

@bl
¼ mean

@E

@Xl
� Xl � ð1� XlÞ; 1

� �
; (4)

where l ¼ 1; . . . ; L and the regularization terms are omitted.
The element-wise product is denoted as � and meanð�; 1Þ is
the matlab operation on matrices. In practice, we only use a
small part of the data (e.g., 128 data points) to compute the
gradients for each update. This is called stochastic gradient
descent.

As we can see, in conventional deep learning models,
only Wl and bl are free parameters, which we will update
in each iteration of the optimization. Xl is not a free
parameter since it can be computed exactly if Wl and bl

are given.

2.2 Autoencoders

An autoencoder (AE) is a feedforward neural network to
encode the input into a more compact representation and
reconstruct the input with the learned representation. In
its simplest form, an autoencoder is no more than a multi-
layer perceptron with a bottleneck layer (a layer with a
small number of hidden units) in the middle. The idea of
autoencoders has been around for decades [10], [20], [35]
and abundant variants of autoencoders have been pro-
posed to enhance representation learning including
sparse AE [48], contractive AE [51], and denoising AE
[59]. For more details, please refer to a nice recent book
on deep learning [20]. Here we introduce a kind of multi-
layer denoising AE, known as stacked denoising autoen-
coders (SDAE), both as an example of AE variants and as
background for its applications on BDL-based recom-
mender systems in Section 4.

SDAE [59] is a feedforward neural network for learn-
ing representations (encoding) of the input data by learn-
ing to predict the clean input itself in the output, as
shown in Fig. 1. The hidden layer in the middle, i.e., X2

in the figure, can be constrained to be a bottleneck to
learn compact representations. The difference between
traditional AE and SDAE is that the input layer X0 is a
corrupted version of the clean input data. Essentially an
SDAE solves the following optimization problem:

min
fWlg;fblg

kXc � XLk2F þ �
X
l

kWlk2F

subject to Xl ¼ sðXl�1Wl þ blÞ; l ¼ 1; . . . ; L� 1

XL ¼ XL�1WL þ bL;

Here SDAE can be regarded as a multilayer perceptron for
regression tasks described in the previous section. The input
X0 of the MLP is the corrupted version of the data and the tar-
get Y is the clean version of the data Xc. For example, Xc can
be the raw datamatrix, andwe can randomly set 30 percent of
the entries in Xc to 0 and get X0. In a nutshell, SDAE learns a
neural network that takes the noisy data as input and recovers
the clean data in the last layer. This iswhat ‘denoising’ means.
Normally, the output of the middle layer, i.e., X2 in Fig. 1,
would be used to compactly represent the data.

2.3 Other Deep Learning Models

Other commonly used deep learning models include convo-
lutional neural networks (CNN) [31], [36], which apply con-
volution operators and pooling operators to process image
or video data, and recurrent neural networks (RNN) [20],
[26], which use recurrent computation to imitate human
memory, and restricted Boltzmann machines (RBM) [24],
which are undirected probabilistic neural networks with
binary hidden and visible layers. Note that there is a vast lit-
erature on deep learning and neural networks. The intro-
duction in this section intends to serve only as the
background of BDL. Readers are referred to [20] for a com-
prehensive survey and more details.

3 PROBABILISTIC GRAPHICAL MODELS

Probabilistic Graphical Models use diagrammatic representa-
tions to describe random variables and relationships among
them. Similar to a graph that contains nodes (vertices) and
links (edges), PGM has nodes to represent random variables
and links to express probabilistic relationships among them.

3.1 Models

As pointed out in [5], there are two main types of PGMs,
directed PGMs (also known as Bayesian networks) and
undirected PGMs (also known as Markov random fields),
although there exist hybrid ones. In this paper we mainly
focus on directed PGMs.2 For details on undirected PGMs,
readers are referred to [5].

A classic example of a PGM would be latent Dirichlet
allocation (LDA), which is used as a topic model to analyze
the generation of words and topics in documents. Usually
PGM comes with a graphical representation of the model
and a generative process to depict the story of how the

Fig. 1. A 2-layer SDAE with L ¼ 4.

2. For convenience, PGM stands for directed PGM in this paper
unless specified otherwise.
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random variables are generated step by step. Fig. 2 shows
the graphical model for LDA and the corresponding genera-
tive process is as follows:

� For each document j (j ¼ 1; 2; . . . ; J),
1) Draw topic proportions uj � DirichletðaÞ.
2) For each word wjn of item (paper)wj,

a) Draw topic assignment zjn � MultðujÞ.
b) Draw word wjn � Multðbzjn

Þ.
The generative process above gives the story of how the

random variables are generated. In the graphical model in
Fig. 2, the shaded node denotes observed variables while
the others are latent variables (u and z) or parameters (a and
b). As we can see, once the model is defined, learning algo-
rithms can be applied to automatically learn the latent varia-
bles and parameters.

Due to its Bayesian nature, PGM like LDA is easy to
extend to incorporate other information or to perform
other tasks. For example, after LDA, different variants of
topic models based on it have been proposed. The
authors in [7], [61] proposed to incorporate temporal
information and [6] extends LDA by assuming correla-
tions among topics. To make it possible to process large
datasets, [27] extends LDA from the batch mode to the
online setting. On recommender systems, [60] extends
LDA to incorporate rating information and make recom-
mendations. This model is then further extended to
incorporate social information [49], [62], [63].

3.2 Inference and Learning

Strictly speaking, the process of finding the parameters (e.g., a
and b in Fig. 2) is called learning and the process of finding the
latent variables (e.g., u and z in Fig. 2) given the parameters is
called inference. However, given only the observed variables
(e.g.,w in Fig. 2), learning and inference are often intertwined.
Usually, the learning and inference of LDA would alternate
between the updates of latent variables (which correspond to
inference) and the updates of the parameters (which corre-
spond to learning). Once the learning and inference of LDA is
completed, we would have the parameters a and b. If a new
document arrives, we can now fix the learned a and b and
then perform inference alone to find the topic proportions uj
of the newdocument.3

As in LDA, various learning and inference algorithms are
available for each PGM. Among them, the most cost-effective
one is probably maximum a posteriori (MAP), which
amounts to maximizing the posterior probability of the latent
variable. Using MAP, the learning process is equivalent to
minimizing (or maximizing) an objective function with regu-
larization. One famous example is the probabilisticmatrix fac-
torization (PMF) [53]. The learning of the graphical model in
PMF is equivalent to the factorization of a large matrix into
two low-rankmatriceswith L2 regularization.

MAP, as efficient as it is, gives us only point estimates of
latent variables (and parameters). In order to take the uncer-
tainty into account and harness the full power of Bayesian
models, one would have to resort to Bayesian treatments
such as variational inference and Markov chain Monte
Carlo (MCMC). For example, the original LDA uses varia-
tional inference to approximate the true posterior with fac-
torized variational distributions [8]. Learning of the latent
variables and parameters then boils down to minimizing
the KL-divergence between the variational distributions
and the true posterior distributions. Besides variational
inference, another choice for a Bayesian treatment is to use
MCMC. For example, MCMC algorithms such as [47] have
been proposed to learn the posterior distributions of LDA.

4 BAYESIAN DEEP LEARNING

With the background on deep learning and PGM, we are
now ready to introduce the general framework and some
concrete examples of BDL. Specifically, in this section we
will list some recent BDL models with applications on rec-
ommender systems and topic models. A summary of these
models is shown in Table 1.

4.1 General Framework

As mentioned in Section 1, BDL is a principled probabilistic
framework with two seamlessly integrated components: a
perception component and a task-specific component.

PGM for BDL. Fig. 3 shows the PGM of a simple BDL
model as an example. The part inside the red rectangle on
the left represents the perception component and the part
inside the blue rectangle on the right is the task-specific
component. Typically, the perception component would be
a probabilistic formulation of a deep learning model with
multiple nonlinear processing layers represented as a chain
structure in the PGM. While the nodes and edges in the per-
ception component are relatively simple, those in the task-
specific component often describe more complex distribu-
tions and relationships among variables (as in LDA).

Three Sets of Variables. There are three sets of variables in a
BDL model: perception variables, hinge variables, and task
variables: (1) In this paper, we use Vp to denote the set of
perception variables (e.g., A, B, and C in Fig. 3), which are
the variables in the perception component. Usually Vp

would include the weights and neurons in the probabilistic
formulation of a deep learning model. (2) We use Vh to
denote the set of hinge variables (e.g., J in Fig. 3). These vari-
ables directly interact with the perception component from
the task-specific component. Table 1 shows the set of hinge
variables Vh for each listed BDL models. (3) The set of task
variables (e.g., G, I, and H in Fig. 3), i.e., variables in the
task-specific component without direct relation to the per-
ception component, is denoted as Vt.

The I.I.D. Requirement. Note that hinge variables are
always in the task-specific component. Normally, the con-
nections between hinge variables Vh and the perception
component (e.g., C! J in Fig. 3) should be i.i.d. for conve-
nience of parallel computation in the perception component.
For example, each row in J is related to only one correspond-
ing row in C. Although it is not mandatory in BDL models,
meeting this requirement would significantly increase the
efficiency of parallel computation inmodel training.

Fig. 2. The probabilistic graphical model for LDA, J is the number of
documents andD is the number of words in a document.

3. For convenience, we use ‘learning’ to represent both ‘learning and
inference’ in the following text.

3398 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 12, DECEMBER 2016

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on September 15,2024 at 02:31:03 UTC from IEEE Xplore.  Restrictions apply. 



Joint Distribution Decomposition. If the edges between the
two components point towards Vh (as shown in Fig. 3, where
Vp ¼ fA;B;C;D;E; Fg, Vh ¼ fJg, and Vt ¼ fI;G;Hg), the
joint distribution of all variables can be written as

pðVp;Vh;VtÞ ¼ pðVpÞpðVhjVpÞpðVtjVhÞ: (5)

If the edges between the two components originate from
Vh (similar to Fig. 3 except that the edge points from J to C),
the joint distribution of all variables can be written as

pðVp;Vh;VtÞ ¼ pðVtÞpðVhjVtÞpðVpjVhÞ: (6)

Apparently, it is possible for BDL to have some edges
between the two components pointing towards Vh and
some originating from Vh, in which case the decomposition
of the joint distribution would be more complex.

Variance Related toVh.Asmentioned in Section 1, one of the
motivations for BDL is to model the uncertainty of exchanging
information between the perception component and the task-
specific component, which boils down tomodeling the uncer-
tainty related to Vh. For example, this kind of uncertainty is
reflected in the variance of the conditional density pðVhjVpÞ
in Equation (5).4 According to the degree of flexibility, there
are three types of variance for Vh (for simplicity we assume
the joint likelihood of BDL is Equation (5), Vp ¼ fpg,
Vh ¼ fhg, and pðVhjVpÞ ¼ N ðhjp; sÞ in our example):

� Zero-Variance. Zero-Variance (ZV) assumes no uncer-
tainty during the information exchange between the
two components. In the example, zero-variance
means directly setting s to 0.

� Hyper-Variance. Hyper-Variance (HV) assumes that
uncertainty during the information exchange is
defined through hyperparameters. In the example,
HV means that s is a hyperparameter that is manu-
ally tuned.

� Learnable Variance. Learnable Variance (LV) uses
learnable parameters to represent uncertainty during
the information exchange. In the example, s is the
learnable parameter.

As shown above, we can see that in terms of model flexibil-
ity, LV > HV > ZV. Normally, if the models are properly
regularized, an LV model would outperform an HV model,
which is superior to a ZVmodel. In Table 1,we show the types

of variance forVh in different BDLmodels. Note that although
each model in the table has a specific type, one can always
adjust the models to devise their counterparts of other types.
For example, while CDL in the table is an HV model, we can
easily adjust pðVhjVpÞ in CDL to devise its ZV and LV coun-
terparts. In [67], authors compare the performance of an HV
CDL and a ZVCDLand finds that the former performs signifi-
cantly better, meaning that sophisticatedly modeling uncer-
tainty between two components is essential for performance.

Learning Algorithms. Due to the nature of BDL, practical
learning algorithms need to meet these criteria:

1) They should be online algorithms in order to scale
well for large datasets.

2) They should be efficient enough to scale linearly
with the number of free parameters in the perception
component.

Criterion (1) implies that conventional variational inference
or MCMC methods are not applicable. Usually an online
version of them is needed [28]. Most SGD-based methods
do not work either unless only MAP inference (as opposed
to Bayesian treatments) is performed. Criterion (2) is needed
because there are typically a large number of free parame-
ters in the perception component. This means methods
based on Laplace approximation [41] are not realistic since
they involve the computation of a Hessian matrix that scales
quadratically with the number of free parameters.

4.2 Bayesian Deep Learning for Recommender
Systems

Despite the successful applications of deep learning on nat-
ural language processing and computer vision, very few
attempts have been made to develop deep learning models
for CF. The authors in [54] use restricted Boltzmann
machines instead of the conventional matrix factorization
formulation to perform CF and [19] extends this work by
incorporating user-user and item-item correlations.
Although these methods involve both deep learning and
CF, they actually belong to CF-based methods because they

Fig. 3. The PGM for an example BDL. The red rectangle on the left indi-
cates the perception component, and the blue rectangle on the right indi-
cates the task-specific component. The hinge variable Vh ¼ fJg.

TABLE 1
Summary of BDL Models. Vh is the Set of Hinge Variables Mentioned in Section 4.1

Applications Models Vh Variance of Vh MAP Gibbs Sampling SG Thermostats

Recommender
Systems

CDL fVg Hyper-Variance @
Bayesian CDL fVg Hyper-Variance @
Marginalized CDL fVg Learnable Variance @
Symmetric CDL fV;Ug Learnable Variance @
Collaborative Deep Ranking fVg Hyper-Variance @

Topic
Models

Relational SDAE fSg Hyper-Variance @
DPFA-SBN fXg Zero-Variance @ @
DPFA-RBM fXg Zero-Variance @ @

V and U are the item latent matrix and the user latent matrix (Section 4.2.1). S is the relational latent matrix (Section 4.3.1), and X is the content matrix
(Section 4.3.2).

4. For models with the joint likelihood decomposed as in Equa-
tion (6), the uncertainty is reflected in the variance of pðVpjVhÞ.
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do not incorporate content information as in CTR [60],
which is crucial for accurate recommendation. The authors
in [52] use low-rank matrix factorization in the last weight
layer of a deep network to significantly reduce the num-
ber of model parameters and speed up training, however
it is for classification instead of recommendation tasks.
On music recommendation, [45], [68] directly use con-
ventional CNN or deep belief networks (DBN) to assist
representation learning for content information, but the
deep learning components of their models are determin-
istic without modeling the noise and hence they are less
robust. The models achieve performance boost mainly by
loosely coupled methods without exploiting the interac-
tion between content information and ratings. Besides,
the CNN is linked directly to the rating matrix, which
means the models will perform poorly due to serious
overfitting when the ratings are sparse.

4.2.1 Collaborative Deep Learning

To address the challenges above, a hierarchical Bayesian
model called collaborative deep learning (CDL) as a novel
tightly coupled method for RS is introduced in [67]. Based on
a Bayesian formulation of SDAE, CDL tightly couples deep
representation learning for the content information and col-
laborative filtering for the rating (feedback) matrix, allowing
two-way interaction between the two. Experiments show that
CDL significantly outperforms the state of the art.

In the following text, we will start with the introduction
of the notation used during our presentation of CDL. After
that we will review the design and learning of CDL.

Notation and Problem Formulation. Similar to the work in
[60], the recommendation task considered in CDL takes
implicit feedback [30] as the training and test data. The entire
collection of J items (articles or movies) is represented by a
J-by-BmatrixXc, where row j is the bag-of-words vectorXc;j�
for item j based on a vocabulary of size B. With I users, we
define an I-by-J binary rating matrix R ¼ ½Rij�I	J . For exam-
ple, in the dataset citeulike-a [60], [62], [67] Rij ¼ 1 if user i has
article j in his or her personal library and Rij ¼ 0 otherwise.
Given part of the ratings in R and the content information Xc,
the problem is to predict the other ratings in R. Note that
although CDL in its current form focuses on movie recom-
mendation (where plots of movies are considered as content
information) and article recommendation like [60] in this sec-
tion, it is general enough to handle other recommendation
tasks (e.g., tag recommendation).

Matrix Xc plays the role of clean input to the SDAE while
the noise-corrupted matrix, also a J-by-B matrix, is denoted
by X0. The output of layer l of the SDAE is denoted by Xl

which is a J-by-Kl matrix, whereKl is the number of units in
layer l. Similar to Xc, row j of Xl is denoted by Xl;j�.Wl and bl

are the weight matrix and bias vector, respectively, of layer l,
Wl;�n denotes column n of Wl, and L is the number of layers.

For convenience, we use Wþ to denote the collection of all
layers of weight matrices and biases. Note that an L=2-layer
SDAE corresponds to anL-layer network.

Generalized Bayesian SDAE. Following the introduction of
SDAE in Section 2.2, if we assume that both the clean input
Xc and the corrupted input X0 are observed, similar to [4],
[5], [12], [41], we can define the following generative process
of generalized Bayesian SDAE:

1) For each layer l of the SDAE network,
a) For each column n of theweightmatrixWl, draw

Wl;�n � Nð0; ��1w IKl
Þ:

b) Draw the bias vector bl � Nð0; ��1w IKl
Þ.

c) For each row j of Xl, draw

Xl;j� � N ðsðXl�1;j�Wl þ blÞ; ��1s IKl
Þ: (7)

2) For each item j, draw a clean input 5

Xc;j� � N ðXL;j�; ��1n IBÞ:
Note that if �s goes to infinity, the Gaussian distribution

in Equation (7) will become a Dirac delta distribution [58]
centered at sðXl�1;j�Wl þ blÞ, where sð�Þ is the sigmoid func-
tion. The model will degenerate to be a Bayesian formula-
tion of SDAE. That is why we call it generalized SDAE.

Note that the first L=2 layers of the network act as an
encoder and the last L=2 layers act as a decoder. Maximiza-
tion of the posterior probability is equivalent to minimiza-
tion of the reconstruction error with weight decay taken
into consideration.

Collaborative Deep Learning. Using the Bayesian SDAE as a
component, the generative process of CDL is defined as
follows:

1) Generate variables of generalized Bayesian SDAE.
2) For each item j,

a) Draw the latent item offset vector �j �
Nð0; ��1v IKÞ and then set the latent item vector:

vj ¼ �j þ XT
L
2;j�

:

3) Draw a latent user vector for each user i:

ui � Nð0; ��1u IKÞ:
4) Draw a rating Rij for each user-item pair ði; jÞ:

Rij � NðuT
i vj;C

�1
ij Þ:

Here �w, �n, �u, �s, and �v are hyperparameters and Cij is a
confidence parameter similar to that for CTR [60] (Cij ¼ a if
Rij ¼ 1 and Cij ¼ b otherwise). Note that the middle layer
XL=2 serves as a bridge between the ratings and content

information. This middle layer, along with the latent offset
�j, is the key that enables CDL to simultaneously learn an
effective feature representation and capture the similarity
and (implicit) relationship between items (and users). Simi-
lar to the generalized SDAE, for computational efficiency,
we can also take �s to infinity.

The graphical model of CDL when �s approaches posi-
tive infinity is shown in Fig. 4, where, for notational simplic-

ity, we use x0, xL=2, and xC in place of XT
0;j�, X

T
L
2;j�

, and XT
c;j�,

respectively.
Note that according the definition in Section 4.1, here the

perception variables Vp ¼ ffWlg; fblg; fXlg;Xcg, the hinge
variables Vh ¼ fVg, and the task variables Vt ¼ fU;Rg,
where V ¼ ðvjÞJj¼1 and U ¼ ðuiÞIi¼1.

Learning. Based on the CDL model above, all parameters
could be treated as random variables so that fully Bayesian

5. Note that while generation of the clean input Xc from XL is part of
the generative process of the Bayesian SDAE, generation of the noise-
corrupted input X0 from Xc is an artificial noise injection process to help
the SDAE learn a more robust feature representation.
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methods such as Markov chain Monte Carlo or variational
approximation methods [32] may be applied. However,
such treatment typically incurs high computational cost.
Consequently, CDL uses an EM-style algorithm for obtain-
ing the MAP estimates, as in [60].

As in CTR [60], maximizing the posterior probability is
equivalent to maximizing the joint log-likelihood of U, V,
fXlg, Xc, fWlg, fblg, and R given �u, �v, �w, �s, and �n

L ¼� �u

2

X
i

kuik22 �
�w

2

X
l

ðkWlk2F þ kblk22Þ

� �v

2

X
j

kvj � XT
L
2;j�
k22 �

�n

2

X
j

kXL;j� � Xc;j�k22

� �s

2

X
l

X
j

ksðXl�1;j�Wl þ blÞ � Xl;j�k22

�
X
i;j

Cij

2
ðRij � uT

i vjÞ2:

If �s goes to infinity, the likelihood becomes:

L ¼� �u

2

X
i

kuik22 �
�w

2

X
l

ðkWlk2F þ kblk22Þ

� �v

2

X
j

kvj � feðX0;j�;WþÞTk22

� �n

2

X
j

kfrðX0;j�;WþÞ � Xc;j�k22

�
X
i;j

Cij

2
ðRij � uT

i vjÞ2;

(8)

where the encoder function feð�;WþÞ takes the corrupted
content vector X0;j� of item j as input and computes the

encoding of the item, and the function frð�;WþÞ also takes
X0;j� as input, computes the encoding and then reconstructs
the content vector of item j. For example, if the number of

layers L ¼ 6, feðX0;j�;WþÞ is the output of the third layer

while frðX0;j�;WþÞ is the output of the sixth layer.
From the optimization perspective, the third term in the

objective function (8) above is equivalent to a multi-layer per-
ceptron using the latent item vectors vj as the target while the
fourth term is equivalent to an SDAE minimizing the recon-
struction error. From the perspective of neural networks
(NN), when �s approaches positive infinity, training of the
probabilistic graphical model of CDL in Fig. 4(left) would
degenerate to simultaneously training two neural networks
overlaid together with a common input layer (the corrupted
input) but different output layers, as shown in Fig. 5. Note
that the second network is much more complex than typical
neural networks due to the involvement of the ratingmatrix.

When the ratio �n=�v approaches positive infinity, it will
degenerate to a two-step model in which the latent repre-
sentation learned using SDAE is put directly into the CTR.
The interaction between the perception component and the
task-specific component is one-way (from the perception
component to the task-specific component), meaning that
the perception component will not be affected by the task-
specific component. Another extreme happens when �n=�v

goes to zero where the decoder of the SDAE essentially van-
ishes. On the right of Fig. 4 is the graphical model of the
degenerated CDL when �n=�v goes to zero. As demon-
strated in the experiments, the predictive performance will
suffer greatly for both extreme cases [67]. This verifies that
(1) the information from the task-specific component can
improve the perception component, and (2) mutual boost-
ing effect is crucial to BDL.

For ui and vj, block coordinate descent similar to [30],

[60] is used. Given the current Wþ, we compute the gra-
dients of L with respect to ui and vj and then set them to
zero, leading to the following update rules:

ui  ðVCiV
T þ �uIKÞ�1VCiRi

vj  ðUCiU
T þ �vIKÞ�1ðUCjRj þ �vfeðX0;j�;WþÞT Þ;

where U ¼ ðuiÞIi¼1, V ¼ ðvjÞJj¼1, Ci ¼ diagðCi1; . . . ;CiJÞ is a

diagonal matrix, Ri ¼ ðRi1; . . . ;RiJÞT is a column vector con-
taining all the ratings of user i, and Cij reflects the confi-
dence controlled by a and b as discussed in [30]. Cj and Rj

are defined similarly for item j.
Given U and V, we can learn the weights Wl and biases

bl for each layer using the back-propagation (BP) learning
algorithm. The gradients of the likelihood with respect to
Wl and bl are as follows:

Fig. 4. On the left is the graphical model of CDL. The part inside the dashed rectangle represents an SDAE. An example SDAE with L ¼ 2 is shown.
On the right is the graphical model of the degenerated CDL. The part inside the dashed rectangle represents the encoder of an SDAE. An example
SDAE with L ¼ 2 is shown on its right. Note that although L is still 2, the decoder of the SDAE vanishes. To prevent clutter, we omit all variables xl

except x0 and xL=2 in the graphical models.

Fig. 5. NN representation for degenerated CDL.
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rWl
L ¼ ��wWl

� �v

X
j

rWl
feðX0;j�;WþÞT ðfeðX0;j�;WþÞT � vjÞ

� �n

X
j

rWl
frðX0;j�;WþÞðfrðX0;j�;WþÞ � Xc;j�Þ

rblL ¼ ��wbl

� �v

X
j

rbl feðX0;j�;WþÞT ðfeðX0;j�;WþÞT � vjÞ

� �n

X
j

rbl frðX0;j�;WþÞðfrðX0;j�;WþÞ � Xc;j�Þ:

By alternating the update of U, V, Wl, and bl, we can
find a local optimum for L . Several commonly used
techniques such as using a momentum term may be
applied to alleviate the local optimum problem. Note
that a carefully designed BDL model (according to the
i.i.d. requirement and with proper variance models as
stated in Section 4.1) can minimize the overhead of
seamlessly combining the perception component and the
task-specific component. In CDL, the computational com-
plexity (per iteration) of the perception component is
OðJBK1Þ and that of the task-specific component is

OðK2NR þK3Þ, where NR is the number of non-zero
entries in the rating matrix and K ¼ KL

2
. The computa-

tional complexity (per iteration) for the whole model is

OðJBK1þ K2NR þK3Þ [67]. No significant overhead is
introduced.

Prediction. LetD be the observed test data. Similar to [60],

CDL uses the point estimates of ui, W
þ and �j to calculate

the predicted rating

E½RijjD� 
 E½uijD�T ðE½feðX0;j�;WþÞT jD� þ E½�jjD�Þ;
where E½�� denotes the expectation operation. In other
words, we approximate the predicted rating as

R�ij 
 ðu�j ÞT ðfeðX0;j�;Wþ�ÞT þ ��j Þ ¼ ðu�i ÞTv�j :

Note that for any new item j with no rating in the training
data, its offset ��j will be 0.

Table 2 shows the recall of recommendationwith 300 recom-
mended items for different methods in the dataset citeulike-a.
Please refer to [67] formore details.

In the following text, we provide several extensions of
CDL from different perspectives.

4.2.2 Bayesian Collaborative Deep Learning

Besides the MAP estimates, a sampling-based algorithm
for the Bayesian treatment of CDL is also proposed in
[67]. This algorithm turns out to be a Bayesian and gen-
eralized version of the well-known back-propagation
learning algorithm. We list the key conditional densities
as follows:

For Wþ.We denote the concatenation of Wl;�n and b
ðnÞ
l as

Wþl;�n. Similarly, the concatenation of Xl;j� and 1 is denoted

as Xþl;j�. The subscripts of I are ignored. Then

pðWþl;�njXl�1;j�;Xl;j�; �sÞ
/ N ðWþ

l;�nj0; ��1w IÞN ðXl;�njsðXþl�1Wþ
l;�nÞ; ��1s IÞ:

For Xl;j� (l 6¼ L=2). Similarly, we denote the concatenation

ofWl and bl asW
þ
l and have

pðXl;j�jWþl ;Wþ
lþ1;Xl�1;j�;Xlþ1;j��sÞ

/ N ðXl;j�jsðXþl�1;j�Wþ
l Þ; ��1s IÞ�

N ðXlþ1;j�jsðXþl;j�Wþlþ1Þ; ��1s IÞ:

Note that for the last layer (l ¼ L) the second Gaussian

would beNðXc;j�jXl;j�; ��1s IÞ instead.
For Xl;j� (l ¼ L=2). Similarly, we have

pðXl;j�jWþ
l ;W

þ
lþ1;Xl�1;j�;Xlþ1;j�; �s; �v; vjÞ

/ N ðXl;j�jsðXþl�1;j�Wþ
l Þ; ��1s IÞ�

N ðXlþ1;j�jsðXþl;j�Wþ
lþ1Þ; ��1s IÞN ðvjjXl;j�; ��1v IÞ:

For vj. The posterior pðvjjXL=2;j�;R�j;C�j; �v;UÞ

/ N ðvjjXT
L=2;j�; �

�1
v IÞ

Y
i

NðRijjuT
i vj;C

�1
ij Þ:

For ui. The posterior pðuijRi�;V; �u;Ci�Þ

/ N ðuij0; ��1u IÞ
Y
j

ðRijjuT
i vjjC�1ij Þ:

Interestingly, if �s goes to infinity and adaptive rejection
Metropolis sampling (which involves using the gradients of
the objective function to approximate the proposal distribu-

tion) is used, the sampling for Wþ turns out to be a Bayesian
generalized version of BP. Specifically, as Fig. 6 shows, after
getting the gradient of the loss function at one point (the red
dashed line on the left), the next sample would be drawn in
the region under that line, which is equivalent to a probabi-
listic version of BP. If a sample is above the curve of the loss
function, a new tangent line (the black dashed line on the
right) would be added to better approximate the distribu-
tion corresponding to the joint log-likelihood. After that,
samples would be drawn from the region under both lines.
During the sampling, besides searching for local optima
using the gradients (MAP), the algorithm also takes the var-
iance into consideration. That is why it is called Bayesian
generalized back-propagation.

4.2.3 Marginalized Collaborative Deep Learning

In SDAE, corrupted input goes through encoding and
decoding to recover the clean input. Usually, different
epochs of training use different corrupted versions as input.
Hence generally, SDAE needs to go through enough epochs
of training to see sufficient corrupted versions of the input.
Marginalized SDAE (mSDAE) [13] seeks to avoid this by
marginalizing out the corrupted input and obtaining
closed-form solutions directly. In this sense, mSDAE is
more computationally efficient than SDAE.

TABLE 2
Recall@300 on the Dataset Citeulike-a (%)

SVDFeature [14] CMF [56] DeepMusic [45] CTR [60] CDL [67]

11.19 13.45 12.32 22.11 31.06
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As mentioned in [37], using mSDAE instead of the Bayes-
ian SDAE could lead to more efficient learning algorithms.
For example, in [37], the objective when using a one-layer
mSDAE can be written as follows:

L ¼�
X
j

keX0;j�W1 � Xc;j�k22 �
X
i;j

Cij

2
ðRij � uT

i vjÞ2

� �u

2

X
i

kuik22 �
�v

2

X
j

kvTj P1 � X0;j�W1k22;
(9)

where eX0;j� is the collection of k different corrupted versions

of X0;j� (a k-by-Bmatrix) and Xc;j� is the k-time repeated ver-
sion of Xc;j� (also a k-by-B matrix). P1 is the transformation
matrix for item latent factors.

The solution forW1 would be:

W1 ¼ EðS1ÞEðQ1Þ�1;

where S1 ¼ X
T

c;j�eX0;j� þ �v
2 PT

1VXc and Q1 ¼ X
T

c;j�eX0;j� þ �v
2 XT

c

Xc. A solver for the expectation in the equation above is
provided in [13]. Note that this is a linear and one-layer
case which can be generalized to the nonlinear and
multi-layer case using the same techniques as in [12],
[13].

As we can see, in marginalized CDL, the perception vari-
ables Vp ¼ fX0;Xc;W1g, the hinge variables Vh ¼ fVg, and
the task variables Vt ¼ fP1;R;Ug.

4.2.4 Collaborative Deep Ranking

CDL assumes a collaborative filtering setting to model the
ratings directly. However, the output of recommender sys-
tems is often a ranked list, which means it would be more
natural to use ranking rather than ratings as the objective.
With this motivation, collaborative deep ranking (CDR) is
proposed [71] to jointly perform representation learning
and collaborative ranking. The corresponding generative
process is the same as that of CDL except for Step 3 and 4,
which should be replaced with:

� For each user i,
1) Draw a latent user vector for each user i:

ui � Nð0; ��1u IKÞ:
2) For each pair-wise preference ðj; kÞ 2 Pi, where

Pi ¼ fðj; kÞ : Rij � Rik > 0g, draw the prefer-

ence: Dijk � NðuT
i vj � uT

i vk;C
�1
ijkÞ:

Following the generative process, the last term of Equa-

tion (8) becomes �P
i;j;k

Cijk

2 ðDijk � ðuT
i vj � uT

i vkÞÞ2. Similar

algorithms can be used to learn the parameters in CDR. As
reported in [71], using the ranking objective leads to signifi-
cant improvement in the recommendation performance.

Following the definition in Section 4.1, CDR’s perception
variables Vp ¼ ffWlg; fblg; fXlg;Xcg, the hinge variables
Vh ¼ fVg, and the task variables Vt ¼ fU;Dg.

4.2.5 Symmetric Collaborative Deep Learning

Models like [67], [71] focus the deep learning component on
modeling the item content. Besides the content information
from the items, attributes of users sometimes contain much
more important information. It is therefore desirable to
extend CDL to model user attributes as well [37]. We call
this variant symmetric CDL. For example, using an extra
mSDAE on the user attributes adds two extra terms in Equa-
tion (9), � �u

2

P
i kuT

i P2 � Y0;j�W2k22 and �P
i keY0;i�W2 �

Yc;i�k22, where eY0;j� (a k-by-D matrix for user attributes) is
the collection of k different corrupted versions of Y0;j� and
Yc;i� (also a k-by-D matrix) is the k-time repeated version of
Yc;i� (the clean user attributes). P2 is the transformation
matrix for user latent factors and D is the number of user
attributes. Similar to the marginalized CDL, the solution for
W2 given other parameters is

W2 ¼ EðS2ÞEðQ2Þ�1;

where S2 ¼ Y
T

c;i�eY0;i� þ �u
2 PT

2UYc andQ2 ¼ Y
T

c;i�eY0;i� þ �u
2 YT

c Yc.
In symmetric CDL, the perception variables Vp ¼ fX0;

Xc;W1;Y0;Yc;W2g, the hinge variables Vh ¼ fV;Ug, and
the task variables Vt ¼ fP1;P2;Rg.

4.2.6 Discussion

CDL is the first hierarchical Bayesian model to bridge the gap
between state-of-the-art deep learningmodels andRS. By per-
forming deep learning collaboratively, CDL and its variants
can simultaneously extract an effective deep feature represen-
tation from the content and capture the similarity and implicit
relationship between items (and users). This way, the percep-
tion component and the task-specific component are able to
interact with each other to create synergy and further boost
the recommendation accuracy. The learned representation
may also be used for tasks other than recommendation.
Unlike previous deep learningmodelswhich use a simple tar-
get such as classification [33] and reconstruction [59], CDL-
based models6 use CF as a more complex target in a probabi-
listic framework.

As mentioned in Section 1, the synergy created by infor-
mation exchange between two components is crucial to the
performance of BDL. In the CDL-based models above, the
exchange is achieved by assuming Gaussian distributions
that connect the hinge variables and the variables in the
perception component (drawing the hinge variable

vj � NðXT
L
2;j�

; ��1v IKÞ in the generative process of CDL,

where XL
2
is a perception variable), which is simple but

effective and efficient in computation. Among the five CDL-

Fig. 6. Sampling as generalized BP.

6. During the review process of this paper, there are some newly
published works based on BDL (e.g., some CDL-based works [65], [72]).
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based models in Table 1, three of them are HV models and
the others are LV models, according to the definition in Sec-
tion 4.1. Since it has been verified that the HV CDL signifi-
cantly outperforms its ZV counterpart [67], we can expect
extra performance boosts from the LV counterparts of the
three HV models.

Besides efficient information exchange, the designs of the
models alsomeet the i.i.d. requirement of the distribution con-
cerning hinge variables discussed in Section 4.1 and are hence
easily parallelizable. In some models to be introduced later,
we will see alternative designs to enable efficient and i.i.d.
information exchange between the two components of BDL.

4.3 Bayesian Deep Learning for Topic Models

In this section, we review some examples of using BDL for
topic models. These models combine the merits of PGM
(which naturally incorporates the probabilistic relationships
among variables) and NN (which learns deep representa-
tions efficiently), leading to significant performance boost.

4.3.1 Relational Stacked Denoising Autoencoders as

Topic Models

Problem Statement and Notation. Assume we have a set of
items (articles or movies) Xc, with XT

c;j� 2 RB denoting the
content (attributes) of item j. Besides, we use IK to denote a
K-dimensional identity matrix and S ¼ ½s1; s2; . . . ; sJ � to
denote the relational latent matrix with sj representing the
relational properties of item j.

From the perspective of SDAE, the J-by-BmatrixXc repre-
sents the clean input to the SDAE and the noise-corrupted
matrix of the same size is denoted by X0. Besides, we denote
the output of layer l of the SDAE, a J-by-Kl matrix, by Xl.
Row j ofXl is denoted byXl;j�,Wl andbl are theweightmatrix
and bias vector of layer l,Wl;�n denotes column n ofWl, andL
is the number of layers. As a shorthand, we refer to the collec-
tion of weight matrices and biases in all layers as Wþ. Note
that anL=2-layer SDAE corresponds to anL-layer network.

Model Formulation. Here we will use the Bayesian SDAE
introduced before as a building block for the relational
stacked denoising autoencoder (RSDAE) model.

As mentioned in [64], RSDAE is formulated as a novel
probabilistic model which can seamlessly integrate layered
representation learning and the relational information avail-
able. Thisway, themodel can simultaneously learn the feature
representation from the content information and the relation
between items. The graphical model of RSDAE is shown in
Fig. 7 and the generative process is listed as follows:

1) Draw the relational latent matrix S from a matrix var-
iate normal distribution [21]:

S � NK;Jð0; IK � ð�lL aÞ�1Þ: (10)

2) For layer l of the SDAE where l ¼ 1; 2; . . . ; L2 � 1,
a) For each column n of the weight matrixWl, draw

Wl;�n � Nð0; ��1w IKl
Þ.

b) Draw the bias vector bl � Nð0; ��1w IKl
Þ.

c) For each row j of Xl, draw

Xl;j� � N ðsðXl�1;j�Wl þ blÞ; ��1s IKl
Þ:

3) For layer L
2 of the SDAE network, draw the represen-

tation vector for item j from the product of two
Gaussians (PoG) [16]:

XL
2;j� � PoGðsðXL

2�1;j�Wl þ blÞ; sTj ; ��1s IK; �
�1
r IKÞ: (11)

4) For layer l of the SDAE network where l ¼ L
2þ

1; L2 þ 2; . . . ; L,

a) For each column n of the weight matrixWl, draw

Wl;�n � Nð0; ��1w IKl
Þ.

b) Draw the bias vector bl � Nð0; ��1w IKl
Þ.

c) For each row j of Xl, draw

Xl;j� � N ðsðXl�1;j�Wl þ blÞ; ��1s IKl
Þ:

5) For each item j, draw a clean input

Xc;j� � N ðXL;j�; ��1n IBÞ:
HereK ¼ KL

2
is the dimensionality of the learned representa-

tion vector for each item, S denotes the K 	 J relational
latent matrix in which column j is the relational latent vector sj

for item j. Note that NK;Jð0; IK � ð�lL aÞ�1Þ in Equation (10)
is amatrix variate normal distribution defined as in [21]

pðSÞ ¼ NK;Jð0; IK � ð�lL aÞ�1Þ

¼ expftr½� �l
2 SL aS

T �g
ð2pÞJK=2jIK jJ=2j�lL aj�K=2

;
(12)

where the operator � denotes the Kronecker product of two
matrices [21], trð�Þ denotes the trace of a matrix, and L a is the
Laplacian matrix incorporating the relational information.
L a ¼ D�A, where D is a diagonal matrix whose diagonal
elements Dii ¼

P
j Aij and A is the adjacency matrix repre-

senting the relational information with binary entries indicat-
ing the links (or relations) between items. Ajj0 ¼ 1 indicates

that there is a link between item j and item j0 andAjj0 ¼ 0 oth-

erwise. PoGðsðXL
2�1;j�Wl þ blÞ; sTj ; ��1s IK; �

�1
r IKÞ denotes the

product of the Gaussian NðsðXL
2�1;j�Wlþ blÞ; ��1s IKÞ and the

GaussianNðsTj ; ��1r IKÞ, which is also a Gaussian [16].

According to the generative process above, maximizing
the posterior probability is equivalent to maximizing the
joint log-likelihood of fXlg, Xc, S, fWlg, and fblg given �s,
�w, �l, �r, and �n

L ¼� �l

2
trðSL aS

T Þ � �r

2

X
j

kðsTj � XL
2;j�Þk

2
2

� �w

2

X
l

ðkWlk2F þ kblk22Þ

� �n

2

X
j

kXL;j� � Xc;j�k22

� �s

2

X
l

X
j

ksðXl�1;j�Wl þ blÞ � Xl;j�k22;

Fig. 7. Graphical model of RSDAE for L ¼ 4. �s is not shown here to pre-
vent clutter.
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where Xl;j� ¼ sðXl�1;j�Wl þ blÞ. Note that the first term

� �l
2 trðSL aS

T Þ corresponds to log pðSÞ in the matrix variate

distribution in Equation (12). By simple manipulation, we

have trðSL aS
T Þ ¼PK

k¼1 S
T
k�L aSk�, where Sk� denotes the

kth row of S. As we can see, maximizing � �l
2 trðSTL aSÞ is

equivalent to making sj closer to sj0 if item j and item j0 are
linked (namely Ajj0 ¼ 1).

In RSDAE, the perception variables Vp ¼ ffXlg;Xc;
fWlg; fblgg, the hinge variables Vh ¼ fSg, and the task vari-
ables Vt ¼ fAg.

Learning Relational Representation and Topics. [64] provides
an EM-style algorithm for MAP estimation. Here we review
some of the key steps as follows.

In terms of the relational latent matrix S, we first fix all
rows of S except the kth one Sk� and then update Sk�. Specif-
ically, we take the gradient of L with respect to Sk�, set it to
0, and get the following linear system:

ð�lL a þ �rIJÞSk� ¼ �rX
T
L
2;�k

: (13)

A naive approach is to solve the linear system by setting

Sk� ¼ �rð�lL a þ �rIJÞ�1XT
L
2;�k

. Unfortunately, the complexity

is OðJ3Þ for one single update. Similar to [38], the steepest
descent method [55] is used to iteratively update Sk�

Sk�ðtþ 1Þ  Sk�ðtÞ þ dðtÞrðtÞ
rðtÞ  �rX

T
L
2;�k
� ð�lL a þ �rIJÞSk�ðtÞ

dðtÞ  rðtÞT rðtÞ
rðtÞT ð�lL a þ �rIJÞrðtÞ

:

As discussed in [38], the use of steepest descent method
dramatically reduces the computation cost in each iteration
from OðJ3Þ to OðJÞ.

Given S, we can learn Wl and bl for each layer using the
back-propagation algorithm. By alternating the update of S,
Wl, and bl, a local optimum for L can be found. Also, tech-
niques such as including a momentum term may help to
avoid being trapped in a local optimum. The computational
complexity for each iteration is OðJBK1 þKJÞ. Similar to
CDL, no significant overhead is introduced.

Table 3 shows the recall for different methods in the
dataset movielens-plot when the learned representation is
used for tag recommendation (with 300 recommended tags
for each item). As we can see, RSDAE significantly outper-
forms SDAE, which means that the relational information
from the task-specific component is crucial to the perfor-
mance boost. Please refer to [64] for more details.

4.3.2 Deep Poisson Factor Analysis with Sigmoid

Belief Networks

The Poisson distribution with support over nonnegative
integers is known as a natural choice to model counts. It is,
therefore, desirable to use it as a building block for topic
models [8]. With this motivation, [75] proposed a model,

dubbed Poisson factor analysis (PFA), for latent nonnega-
tive matrix factorization via Poisson distributions.

Poisson Factor Analysis. PFA assumes a discrete N-by-P
matrix X containing word counts of N documents with a
vocabulary size of P [17], [75]. In a nutshell, PFA can be
described using the following equation:

X � PoisððQ �HÞFÞ; (14)

where F (of size K-by-P where K is the number of topics)
denotes the factor loading matrix in factor analysis with the
kth row fk encoding the importance of each word in topic k.
The N-by-K matrix Q is the factor score matrix with the nth
row un containing topic proportions for document n. The
N-by-K matrix H is a latent binary matrix with the nth row
hn defining a set of topics associated with document n.

Different priors correspond to different models. For
example, Dirichlet priors on fk and un with an all-one
matrix H would recover LDA [8] while a beta-Bernoulli
prior on hn leads to the negative binomial focused topic
model (NB-FTM) model in [74]. In [17], a deep-structured
prior based on sigmoid belief networks (SBN) [43] (an MLP
variant with binary hidden units) is imposed on hn to form
a deep PFA model for topic modeling.

Deep Poisson Factor Analysis. In the deep PFA model [17],
the generative process can be summarized as follows:

fk � Dirðaf; . . . ; afÞ; unk � Gamma

�
rk;

pn
1� pn

�

rk � Gamma

�
g0;

1

c0

�
; g0 � Gamma

�
e0;

1

f0

�

h
ðLÞ
nkL
� BerðsðbðLÞkL

ÞÞ (15)

h
ðlÞ
nkl
� Berðsðhðlþ1Þn w

ðlÞ
kl
þ b

ðlÞ
kl
ÞÞ (16)

xnpk � Poisðfkpunkh
ð1Þ
nk Þ; xnp ¼

XK
k¼1

xnpk; (17)

where L is the number of layers in SBN, which corresponds
to Equations (15) and (16). xnp is an entry in the matrix X,

hðlÞn is the nth row of Hl, and xnpk is the count of word p that
comes from topic k in document n.

In this model, the perception variables Vp ¼ ffHlg;
fWlg; fblgg, the hinge variables Vh ¼ fXg, and the task vari-
ables Vt ¼ fffkg; frkg;Q; g0g. Wl is the weight matrix con-

taining columns of w
ðlÞ
kl

and bl is the bias vector containing

entries of b
ðlÞ
kl

in Equation (16).

Learning Using Bayesian Conditional Density Filtering. Effi-
cient learning algorithms are needed for Bayesian treat-
ments of deep PFA. Gan et al. [17] proposed to use an
online version of MCMC called Bayesian conditional den-
sity filtering (BCDF) to learn both the global parameters
Cg ¼ ðffkg; frkg; g0; fWlg; fblgÞ and the local variables
Cl ¼ ðQ; fHlgÞ. The key conditional densities used for the
Gibbs updates are as follows:

xnpkj� � Multiðxnp; znp1; . . . ; znpKÞ
fkj� � Dirðaf þ x�1k; . . . ; af þ x�PkÞ
unkj� � Gammaðrkhð1Þnk þ xn�k; pnÞ

h
ð1Þ
nk j� � dðxn�k ¼ 0ÞBer

� epnkepnk þ ð1� pnkÞ
�
þ dðxn�k > 0Þ;

TABLE 3
Recall@300 on the DatasetMovielens-Plot (%)

CTR [60] CTR-SR [62] SDAE [59] RSDAE [64]

20.43 23.07 23.45 24.86
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where epnk ¼ pnkð1� pnÞrk , pnk ¼ sðhð2Þn w
ð1Þ
k þ b

ð1Þ
k Þ, xn�k ¼PP

p¼1 xnpk, x�pk ¼
PN

n¼1 xnpk, and znpk / fkpunk. For the learn-

ing of h
ðlÞ
nk where l > 1, the same techniques as in [18] can

be used.
Learning Using Stochastic Gradient Thermostats. An alterna-

tive way of learning deep PFA is through the use of stochas-
tic gradient N�ose-Hoover thermostats (SGNHT), which is more
accurate and scalable. Specifically, the following stochastic
differential equations (SDE) can be used

dCg ¼ vdt; dv ¼ efðCgÞdt� �vdtþ
ffiffiffiffi
D
p

dW

d� ¼
�

1

M
vTv� 1

�
dt;

where efðCgÞ ¼ �rCg
eUðCgÞ and eUðCgÞ is the negative log-

posterior of the model. t indexes time and W denotes the
standard Wiener process. � is the thermostats variable to
make sure the system has a constant temperature. D is the
injected variance which is a constant.

4.3.3 Deep Poisson Factor Analysis with Restricted

Boltzmann Machine

Similar to the deep PFA above, the restricted Boltzmann
machine [24] can be used in place of SBN [17]. If RBM is used,
Equations (15) and (16)would be defined using the energy [24]:

EðhðlÞn ;hðlþ1Þn Þ ¼ � hðlÞn bT
l � hðlÞn WðlÞhðlþ1Þn

T

� hðlþ1Þn bT
lþ1:

For the learning, similar algorithms as the deep PFA with
SBN can be used. Specifically, the sampling process would
alternate between fffkg; fgkg; g0g and ffWlg; fblgg. For
fffkg; fgkg; g0g, similar conditional density as the SBN-
based DPFA is used. For ffWlg; fblgg, they use the contras-
tive divergence algorithm.

4.3.4 Discussion

In BDL-based topic models, the perception component is
responsible for inferring the topic hierarchy from documents
while the task-specific component is in charge of modeling
the word generation, topic generation, word-topic relation, or
inter-document relation. The synergy between these two com-
ponents comes from the bidirectional interaction between
them. On the one hand, knowledge of the topic hierarchy
would facilitate accurate modeling of words and topics, pro-
viding valuable information for learning inter-document rela-
tions. On the other hand, accurately modeling the words,
topics, and inter-document relations could help with the dis-
covery of topic hierarchy and learning of compact document
representations.

As we can see, the information exchange mechanism in
some BDL-based topic models is different from that in
Section 4.2. For example, in the SBN-based DPFAmodel, the
exchange is natural since the bottom layer of SBN, H1, and
the relationship between H1 and Vh ¼ fXg are both inher-
ently probabilistic, as shown in Equations (16) and (17),
which means additional assumptions about the distribution
are not necessary. The SBN-based DPFAmodel is equivalent
to assuming that H in PFA (see Equation (14)) is generated

from a Dirac delta distribution (a Gaussian distribution with
zero variance) centered at the bottom layer of the SBN, H1.
Hence both DPFA models in Table 1 are ZV models, accord-
ing to the definition in Section 4.1. It is worth noting that
RSDAE is an HV model (see Equation (11), where S is the
hinge variable and the others are perception variables), and
naively modifying this model to be its ZV counterpart would
violate the i.i.d. requirement in Section 4.1.

4.4 Other Applications

As mentioned in Section 1, BDL can also be applied to appli-
cations beyond data engineering and data mining (e.g., the
control of nonlinear dynamical systems from raw images or
medical diagnosis with medical images).

Consider controlling a complex dynamical system
according to the live video stream received from a camera.
One way of solving this control problem is by iteration
between two tasks, perception from raw images and control
based on dynamic models. The perception task can be taken
care of using multiple layers of simple nonlinear transfor-
mation (deep learning) while the control task usually needs
more sophisticated models such as hidden Markov models
and Kalman filters [22], [42]. To enable an effective iterative
process between the perception task and the control task,
two-way information exchange between them is often nec-
essary. The perception component would be the basis on
which the control component estimates its states and on the
other hand, the control component with a built-in dynamic
model would be able to predict the future trajectory
(images) by reversing the perception process. For example,
[69] proposed a BDL-based model that performs control
based on the received raw images (videos). Their key gener-
ative process is as follows:

zt � QfðZjXÞ ¼ N ðmt;StÞ
eztþ1 � eQcð eZjZ;uÞ ¼ N ðAtmt þ Btut þ ot;CtÞext;extþ1 � PuðXjZÞ ¼ BernoulliðptÞ;

whereQfðZjXÞ is the encoding model which encodes the raw

images X into latent states Z. eQcð eZjZ;uÞ is the transition

model which predicts the next latent state eZ given the current
latent state Z and the applied control u. PuðXjZÞ is the recon-
struction (decoding)model which reconstructs the raw images
X from latent states Z. The parameters mt, St, At, Bt, ot, Ct,
andpt are then further parameterized by neural networks.

It is worth noting that in terms of information exchange
between the two components, this BDL-based control model
uses a different mechanism from the ones in Sections 4.2 and
4.3: it uses neural networks to separately parameterize the
mean and covariance of hinge variables (e.g.,mt and St in the
encoding model), which is more flexible (with more free
parameters) than models such as CDL and CDR in Section
4.2, where Gaussian distributions with fixed variance are
also used. Note that this BDL-based control model is an LV
model, and since the covariance is assumed to be diagonal
[69], themodel still meets the i.i.d. requirement in Section 4.1.

5 CONCLUSION AND FUTURE RESEARCH

In this paper, we identified a current trend of merging
probabilistic graphical models and neural networks (deep
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learning), proposed a BDL framework, and reviewed rele-
vant recent work on BDL, which strives to combine the
merits of PGM and NN by organically integrating them
in a single principled probabilistic framework. To learn
parameters in BDL, several algorithms have been pro-
posed, ranging from block coordinate descent, Bayesian
conditional density filtering, and stochastic gradient ther-
mostats to stochastic gradient variational Bayes.

BDL has gained its popularity both from the success of
PGM and from recent promising advances in deep learning.
Since many real-world tasks involve both perception and
inference, BDL is a natural choice for harnessing the percep-
tion ability from NN and the (causal and logical) inference
ability from PGM. Although current applications of BDL
focus on recommender systems, topic models, and stochastic
optimal control, in the future, we can expect an increasing
number of other applications such as link prediction, com-
munity detection, active learning, Bayesian reinforcement
learning, and many other complex tasks that need interac-
tion between perception and causal inference. In these com-
plex tasks, BDL with interconnected perception components
(to handle perception) and task-specific components (to han-
dle inference/reasoning) possesses great performance-
boosting potential. Besides, with the advances of efficient
Bayesian neural networks, BDL with BNN as an important
component is expected to bemore andmore scalable.
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