
Published in Transactions on Machine Learning Research (12/2022)

Unsupervised Mismatch Localization in
Cross-Modal Sequential Data
with Application to Mispronunciations Localization

Wei Wei † wei.wei@u.nus.edu
National University of Singapore

Hengguan Huang † huang.hengguan@u.nus.edu
National University of Singapore

Xiangming Gu xiangming@u.nus.edu
National University of Singapore

Hao Wang hw488@cs.rutgers.edu
Rutgers University

Ye Wang wangye@comp.nus.edu.sg
National University of Singapore

Reviewed on OpenReview: https: // openreview. net/ forum? id= 29V0xo7jKp

Abstract

Content mismatch usually occurs when data from one modality is translated to another, e.g.
language learners producing mispronunciations (errors in speech) when reading a sentence
(target text) aloud. However, most existing alignment algorithms assume that the content
involved in the two modalities is perfectly matched, thus leading to difficulty in locating
such mismatch between speech and text. In this work, we develop an unsupervised learning
algorithm that can infer the relationship between content-mismatched cross-modal sequen-
tial data, especially for speech-text sequences. More specifically, we propose a hierarchical
Bayesian deep learning model, dubbed mismatch localization variational autoencoder (ML-
VAE), which decomposes the generative process of the speech into hierarchically structured
latent variables, indicating the relationship between the two modalities. Training such a
model is very challenging due to the discrete latent variables with complex dependencies
involved. To address this challenge, we propose a novel and effective training procedure that
alternates between estimating the hard assignments of the discrete latent variables over a
specifically designed mismatch localization finite-state acceptor (ML-FSA) and updating the
parameters of neural networks. In this work, we focus on the mismatch localization problem
for speech and text, and our experimental results show that ML-VAE successfully locates
the mismatch between text and speech, without the need for human annotations for model
training 1.

1 Introduction

Sequential data is prevalent in daily life and usually comes in multiple modalities simultaneously, such as
video with audio, speech with text, etc. Research problems about multi-modal sequential data processing
have attracted great attention, especially on the alignment problem, such as aligning a video footage with

†These authors contributed equally to this work.
1Codes will be soon available at https://github.com/weiwei-ww/ML-VAE
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actions (Song et al., 2016) or poses (Kundu et al., 2020), aligning speech with its text scripts (Chung et al.,
2018), aligning audio with tags (Favory et al., 2021), etc.

The content mismatch could come from various aspects. For example, mispronounced words in speech or
incorrect human annotation will cause mismatch between speech and text; actors not following scripts will
cause mismatch between the video and the pre-scripted action list. Locating such content mismatch is an
important task and has many potential applications. For example, locating the content mismatch between
speech and text can help detect mispronunciations produced by the speaker, which is crucial for language
learning.

In this work, we focus on the problem of mismatch localization between speech and text inputs. In other
words, i.e., to locate the mispronunciations in the speech produced by a speaker. Such mispronunciation
localization task plays an important role in real-world applications such as computer-aided language learning
system, where the mispronunciation localization results can be used to provide multimodal feedback for the
users. Most existing cross-modal alignment algorithms assume that data from a variety of modalities are
matched to each other (Song et al., 2016; Kundu et al., 2020; Chung et al., 2018; Favory et al., 2021); this
strong assumption leads to difficulty in locating the mismatch between the two modalities. In particular,
recent speech-text alignment approaches (Kürzinger et al., 2020; McAuliffe et al., 2017) mostly work under
the assumption that the speaker has correctly pronounced all the words and are therefore incapable of
detecting mispronunciation. Although earlier studies Finke & Waibel (1997); Hazen (2006); Braunschweiler
et al. (2010); Bell & Renals (2015) have considered the mismatch between speech and text, they require
human-annotated speech to train an acoustic model. However, labeling such data is labor intensive and
expensive. Similarly, traditional mispronunciation detection methods (Leung et al., 2019) also need to be
trained on a large number of human-annotated speech samples from second language (L2) speakers, whose
annotation process is even more time-consuming and requires professional linguists’ support. Furthermore,
these studies on mispronunciation detection can only detect which phonemes/words in the text input are
mispronounced, without locating them in the speech.

To address these issues, we propose a hierarchical Bayesian deep learning model, dubbed mismatch localiza-
tion variational autoencoder (ML-VAE), which aims at performing content mismatch localization between
cross-modal sequential data without requiring any human annotation during the training stage. Our model
is a hierarchically structured variational autoencoder (VAE) containing several hierarchically structured dis-
crete latent variables. These latent variables describe the generative process of speech from L2 speakers and
indicate the relationship between the two modalities.

One challenge for ML-VAE is that training such an architecture is very difficult due to the discrete latent
variables with complex dependencies. To address this challenge, we propose a novel and effective training
procedure that alternates between estimating the hard assignments of the discrete latent variables over a
specifically designed finite-state automaton (FSA) and updating the parameters of neural networks.

The main contributions of our work include:

• We propose a hierarchical Bayesian deep learning model, ML-VAE, to address the problem of content
mismatch localization from cross-modal sequential data.

• Our ML-VAE is the first method that bridges finite-state automata and variational autoencoders;
this is achieved via our proposed mismatch localization finite-state acceptor (ML-FSA), which allows
the ML-VAE to locate the mismatch by searching for the best path in ML-FSA.

• To address the challenge of inferring the latent discrete variables with complex dependencies involved
in ML-VAE, we propose a novel and effective alternating inference and learning procedure.

• We apply ML-VAE to the mispronunciation localization task; experiments on a non-native English
corpus to demonstrate ML-VAE’s effectiveness in terms of unsupervisedly locating the mispronun-
ciation segments in the speech.

2 Related Work

Cross-Modal Sequential Data Alignment There have been several studies on aligning sequential data
from different modalities. For example, for video-action alignment, most existing work focuses on learning

2



Published in Transactions on Machine Learning Research (12/2022)

spatio-temporal relations among the frames. Dwibedi et al. (2019) proposes a self-supervised learning ap-
proach named temporal cycle consistency learning to learn useful features for video action alignment. Liu
et al. (2021) proposes to learn a normalized human pose feature to help perform the alignment task. Song
et al. (2016) adopts an unsupervised way to align the actions in a video with its text description. In terms of
speech-text alignment, a recent study by Kürzinger et al. (2020) proposes using the CTC output to perform
speech-text alignment. However, these aforementioned studies assume a perfect match in the content of the
cross-modal sequential data, making it impossible to locate the content mismatch from the data.

Speech-text alignment is usually referred to as the forced alignment (FA) task (McAuliffe et al., 2017) in the
speech processing community. There is a fairly long history of research related to FA. Traditional method
is to run the Viterbi decoding algorithm (Forney, 1973) on a Hidden-Markov-Model-based (HMM-based)
acoustic model with a given text sequence. Even though several FA studies have considered the particular
problem setting where the text is not perfectly matched to the speech, they require training an acoustic
model using a large amount of human-annotated speech, which is laborious and costly. For instance, Finke
& Waibel (1997); Moreno et al. (1998); Moreno & Alberti (2009); Bell & Renals (2015); Stan et al. (2012)
require an acoustic model for text-to-speech alignment with a modified lattice, and Bordel et al. (2012)
requires an acoustic model to obtain the recognized phoneme sequence. Therefore, these methods fail to
handle our problem setting, where the speech data from L2 speakers is unlabelled.

Variational Autoencoders and Bayesian Deep Learning Variational autoencoder (VAE) (Kingma
& Welling, 2013) is proposed to learn the latent representations of real-world data by introducing latent vari-
ables. It adopts an encoder to approximate the posterior distribution of the latent variable and and a decoder
to model the data distribution. VAEs have a wide range of applications, such as data generation (Mescheder
et al., 2017), representation learning (Oord et al., 2017), etc. As an extension to VAE to handle sequential
data (e.g., speech), the variational recurrent neural network (VRNN) (Chung et al., 2015) introduces latent
variables into the hidden states of a recurrent neural network (RNN), allowing the complex temporal depen-
dency across time steps to be captured. Along a similar line of research, Johnson et al. (2016) proposes the
structured VAE, which integrates the conditional random field-like structured probability graphical model
with VAEs to capture the latent structures of video data. Factorized hierarchical variational autoencoder
(FHVAE) (Hsu et al., 2017) improves upon VRNN and SVAE through introducing two dependent latent
variables at different time scales, which enables the learning of disentangled and interpretable representations
from sequential data. However, the hierarchical models mentioned above are trained by directly optimizing
the evidence lower bound (ELBO), which may fail when discrete latent variables with complex dependencies
are involved. To address this issue, we propose a novel learning procedure to optimize our ML-VAE.

To deal with data from different modalities, Jo et al. (2019) proposes a cross-modal VAE to capture both
intra-modal and cross-modal associations from input data. Theodoridis et al. (2020) proposes a VAE-based
method to perform cross-modal alignment of latent spaces. However, existing work on processing cross-modal
data focuses mainly on learning the relationship between modalities while ignoring the potential mismatch
between them. Therefore, we propose the ML-VAE to address this issue. In general, our work belongs to
the category of Bayesian deep learning (BDL) (Wang & Yeung, 2016; 2020; Wang et al., 2015; Huang et al.,
2020; 2021; 2022), and is the first BDL method that performs mismatch localization.

3 Problem Formulation

Here, we propose to generalize the traditional speech-text alignment problem by considering the content
mismatch between the input sequences (see Fig. 1). Specifically, given two cross-modal sequences: (1) a
speech feature sequence X = (x1, ..., xT ) (xt ∈ RDf , where Df is the feature dimension) as the source
sequence, and (2) a phoneme sequence C = (c1, ..., cL) (cl ∈ P, where P is the phoneme set) as the target
sequence, our goal is to identify the mismatched target elements of C (i.e., mispronounced phonemes) while
locating the corresponding elements in the source sequence (i.e. incorrect speech segments). Concretely, let
C′ = (c′

1, ..., c′
L) be the mismatch-identified target sequence. We use the notation c∗

l to present mismatched
content; then c′

l = c∗
l if c′

l is identified as mismatched content (i.e., a mispronounced phoneme) and c′
l = cl

if c′
l is identified as matched content (i.e., a correctly pronounced phoneme). The final localization result

Ĉ = (ĉ1, ..., ĉT ) is therefore a repeated version of C′ with each element c′
l repeating for dl times, indicating that
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Figure 1: Problem formulation.

c′
l lasts for dl frames. The mismatch localization performance is evaluated by averaging the intersection-over-

union for each successfully detected mismatched phoneme, with more details to be introduced in Sec. 8.1.

4 Model

ML-VAE is a hierarchical Bayesian deep learning model (Wang & Yeung, 2020) based on VAE (Kingma
& Welling, 2013). Our model aims at performing content mismatch localization when aligning cross-modal
sequential data. In this work, we focus on the speech-text mismatch localization task.

This is made possible by decomposing the generative process of the speech into hierarchically structured
latent variables, indicating the relationship between the two modalities.

ML-VAE is designed to use a hierarchical Gaussian mixture model (GMM) to model the match/mismatch
between the sequences. Each Gaussian component corresponds to a type of mismatch, and the selection of
the Gaussian component depends on the discrete latent variables of ML-VAE.

Latent Variables and Generative Process In the context of speech-text mismatch localization, since
both the mismatch-identified phoneme sequence C′ and the duration of each phoneme are unobservable, we
introduce several latent variables to achieve the goal of mismatch localization for speech-text sequences.
Instead of using a duration variable to describe the duration of each phoneme, we use a binary boundary
variable sequence B = (b1, ..., bT ), where bt = 1 means the t-th frame marks the start of a phoneme segment,
and thus

∑T
t=1 bt = L. Besides, a binary correctness variable sequence Π = (π1, ..., πT ) is introduced to

describe the matched/mismatched content in speech. Each entry πt ∈ {0, 1}, with πt = 1 if the t-th speech
frame contains mismatched content (i.e. a mispronounced phoneme), and πt = 0 otherwise.

To model the data generative process, at each time step t, we introduce three more latent variables: 1) yt,
which denotes the estimated phoneme, 2) zt, which represents the Gaussian component indicator, and 3) ht,
which is the speech latent variable.

Figure 2: Graphical model for ML-VAE.

As shown in Fig. 2, we
draw the estimated phoneme
yt from a categorical distri-
bution, and draw the cor-
rectness variable πt from a
Bernoulli distribution. Mean-
while, the boundary variable
bt is assumed to be drawn
from a Bernoulli distribution
Bernoulli(ηt), which is fur-
ther parameterized by a Beta
distribution Beta(α, β).

In the GMM part of ML-VAE,
zt, indicating the index of the
selected Gaussian distribution, is an one-hot variable drawn from a categorical distribution, and ht, the latent
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variable of speech, is drawn from the selected Gaussian distribution. For each phoneme type, we use one
component to model the matched content (i.e., correct pronunciation) and Nm components to model different
mismatch types (i.e., mispronunciation variants). Such a design is motivated by the following observations:
all correct pronunciations of the same phoneme are usually similar to each other, while its mispronunciations
often severely deviate from the correct one and have multiple variants (e.g., the consonant ‘DH’ may be
mispronounced into ‘T’, ‘D’, or ‘TH’). Therefore, for N phoneme types, there are N components modeling
correct pronunciations and N ∗ Nm components modeling mispronunciations, making the GMM part of
ML-VAE contain a total number of K = N + N ∗ Nm components.

Given the design introduced above, the generative process of ML-VAE is as follows:

• For the t-th frame (t = 1, 2, . . . , T ):

– Draw the estimated phoneme yt ∼ Categorical(ζ).
– Draw the boundary variable bt ∼ Bernoulli(γ).
– Draw the correctness variable πt ∼ Bernoulli(ηt) , where ηt ∼ Beta(α, β).
– With yt, bt, and πt, draw zt from zt|yt, πt, bt ∼ Categorical(fz(yt, bt, πt)), where fz(·) denotes

a learnable neural network.
– Given that zt[k] = 1, select the k-th Gaussian distribution and draw ht|zt ∼ N (µk, σ2

k).
– Draw xt|ht ∼ N (fµ(ht), fσ(ht)), where fµ(·) and fσ(·) denote learnable neural networks.

The parameters of the prior distributions of the latent variables (e.g., α, β) in ML-VAE are determined by
the training data.

An Example We will take an audio recording of reading the word ‘NOT’ as an example to explain the
generative process. More specifically, the phoneme sequence contains three phonemes: n, aa, and t. The
estimated phoneme yt is sampled to estimate the phoneme pronounced by the speaker at each time step.
The boundary variable bt is sampled to determine whether the speaker starts to pronounce the next phoneme
at time step t (e.g., from n to aa). The correctness variable πt is then sampled to determine whether this
phoneme (e.g., aa) is correctly pronounced (e.g., whether aa is mispronounced as another phoneme). Based
on yt, bt, and πt, if the phoneme (e.g., aa) is correctly pronounced, the Gaussian component indicator zt

will select the Gaussian distribution for the correct pronunciation to generate the speech latent variable ht;
otherwise, based on how the phoneme is mispronounced (e.g, aa mispronounced as ae), zt will select the
corresponding Gaussian distribution to generate the speech latent variable ht.

Model Architecture ML-VAE contains three components: boundary detector ϕb, phoneme estimator ϕp,
and speech generator ϕh, as shown in Fig. 3. The boundary detector outputs the approximated posterior
qϕb

(bt|xt), and the phoneme estimator outputs the approximated posterior qϕp(yt|xt). The speech generator
aims to reconstruct the input speech feature sequence following the generation process discussed in Sec. 4.
More details are introduced in Sec. 6.2.

:  phoneme estimator

:  boundary detector

:  speech generator+
:  neural network

:  data flow

:  sampling

Legend

+ :  concatenation

Figure 3: Model architecture for ML-VAE.

5



Published in Transactions on Machine Learning Research (12/2022)

5 Mismatch Localization Finite-State Acceptor

In this section, we describe our proposed mismatch localization finite-state acceptor (ML-FSA) that bridges
finite-state automata and variational autoencoders, allowing our ML-VAE to locate the mispronounced
segment in the speech by efficiently searching the best path in ML-FSA. Our ML-FSA is a special type of
finite-state acceptor (FSA) that describes possible hypothesis of mispronunciations and phoneme boundaries.
We show ML-FSA for the l-th phoneme, cl, in the given phoneme sequence in Fig. 4. Such a phoneme-level
ML-FSA contains a set of states and a set of state-to-state transitions; the initial state 0 and the accepting
state 5 are represented by a bold circle and concentric circles respectively; each transition includes a source
state, a destination state, a label and a corresponding weight. Specifically, from the initial state (state 0),
it can transit to state 1 or 3 based on pronunciation correctness (R stands for correct pronunciation and
W stands for mispronunciation). This further leads to two different paths, one for correct pronunciation
(denoted by cl) leading to state 2, and the other one for mispronunciation (denoted by c∗

l ) leading to state
4. In each path, at each time step, since each phoneme may last for several frames, it either still holds at
the current state (denoted by H), or moves forward to the final state 5 (denoted by S).

With the help of the phoneme sequence C, we can naturally build a sentence-level ML-FSA by combining
the corresponding ML-FSA for each phoneme. With the sentence-level ML-FSA, a dynamic programming
(DP) algorithm can be applied to search for the optimal path based on the weights on the transitions. More
specifically, the weight of each transition in ML-FSA can be estimated by the modules in ML-VAE, with
more details to be introduced in Sec. 6.1.

4

2

0

1

3

5

Figure 4: Proposed ML-FSA for the l-th phoneme, cl.

In contrast to weighted finite state transducers
(WFSTs) Mohri et al. (2002), which only model
the segmentation of audio into acoustic units (e.g.,
phonemes), our ML-FSA models the correctness of
pronunciation (R and W ), the phoneme type (cl,
c∗

l ), and the phoneme boundary (H and S), which
can jointly detect and segment the mispronuncia-
tion in the speech and thus perform unsupervised
content mismatch localization. Furthermore, WF-
STs require training a supervised acoustic model for
weighting transitions between states, while our ML-
FSA adopts the unsupervised ML-VAE to calculate all the weights of transitions. The details on locating
the mispronunciation using ML-FSA are described in the next section. Note that ML-FSA takes all possible
mispronunciation variants as a single symbol (c∗

l ), which trades fidelity for efficiency. This is advantageous
for addressing our problem settings: (1) our task focuses on distinguishing between the correct pronunciation
and mispronunciation, rather than identifying the mispronunciation variants; (2) combining mispronuncia-
tion variants for each phoneme can dramatically reduce the computational cost of the dynamic programming
(DP) algorithm searching for the optimal path.

6 Learning

The learning of ML-VAE consists of two main components: latent variables Ψ = {Y, B, Π} and neural
network parameters Φ = {ϕp, ϕb, ϕh}, where Y = (y1, ..., yt), and ϕp, ϕb, and ϕh denote parameters of the
three modules of ML-VAE: phoneme estimator, boundary detector, and speech generator, respectively.

Following the traditional variational inference and the training objective for FHVAE (Hsu et al., 2017), the
ELBO for the joint training objective of ML-VAE can be written as:

ELBO =
T∑

t=1

(
Eq(yt,bt,πt|xt)

[
log p(xt|yt, bt, πt)

]
− DKL(q(yt, bt, πt|xt)||p(yt, bt, πt)

)
, (1)

where DKL is the function to calculate the Kullback–Leibler (KL) divergence, q(yt, bt, πt|xt) is the joint
approximate posterior distribution of the latent variables, p(yt, bt, πt) is the joint prior distribution.
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Figure 5: The training framework of ML-VAE.

However, unlike FHVAE,
learning ML-VAE with such
an objective function is very
difficult due to ML-VAE’s
discrete latent variables with
complex dependencies, as
pointed out by Rolfe (2016).
Furthermore, we empirically
tested an intuitive approach
– using a hard expectation-
maximization (EM) algorithm
(Moon, 1996) – and found
that the system would not
reliably converge. As pointed
out by Locatello et al. (2019),
lacking inductive bias for unsupervised training could render the model unidentifiable. Therefore, we
improve this approach by providing pseudo-labels to some latent variables, as introduced by Khemakhem
et al. (2020). Note that our learning algorithm remains unsupervised since it does not require any external
data other than X and C. Our new training procedure (see Fig. 5) can be described as:

• Step 1 (E step). Given the model parameters Φ, estimate the hard assignments of the latent variables
Ψ̂ = {Ŷ, B̂, Π̂} by:

– Step 1.1. Given ϕp, estimate Ŷ.
– Step 1.2. Given Φ, estimate B̂ and Π̂.

• Step 2 (M step). Given the hard assignments of the latent variables Ψ̂, optimize the model parameters
by:

– Step 2.1. Given the phoneme sequence C as the training target, optimize ϕp .
– Step 2.2. Given a forced alignment result B̄, optimize ϕb.
– Step 2.3. Given the estimated hard assignments Ψ̂ of latent variables, optimize ϕh.

Our approach differs from the standard hard EM algorithm in several aspects. First, since the phoneme
sequence C is given under our problem setting, the phoneme estimator ϕp can be trained by directly optimizing
the cross-entropy loss towards C (Step 2.1). Second, we can directly adopt the predictions of ϕp to obtain Ŷ
(Step 1.1). Third, we design an FSA to assist approximating a maximum a posteriori (MAP) estimate of B̂
and Π̂ (Step 1.2). Fourth, we find that directly using B̂ from Step 1.2 deteriorates the model performance;
therefore in Step 2.2, we adopt a forced alignment result B̄ (Tebelskis, 1995; McAuliffe et al., 2017) to train
the boundary detector ϕb. It is worth noting that obtaining such an alignment in Step 2.2 does not require
any external data other than X and C.

6.1 Step 1: Estimation of the Hard Assignments Ψ̂

Next, we discuss the details of estimating the hard assignments.

Estimation of Ŷ We obtain the estimated phoneme sequence Ŷ with:

Ŷ = argmax
Y

JY(Y; ϕp) = argmax
Y

qϕp
(Y|X ), (2)

where qϕp(Y|X ) is the variational distribution calculated by the phoneme estimator ϕp to approximate the
intractable true posterior p(Y|X ).
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Estimation of B̂ and Π̂ via ML-FSA The estimation of B̂ and Π̂ is done by finding the optimal path in
the sentence-level ML-FSA. As introduced in Sec. 5, the weights of transitions of ML-FSA are all estimated
by the model ML-VAE. More specifically, from state 0, the weights of the two transitions, labeled with R and
W , are estimated by the approximate posterior qϕh

(πt = 0|xt, yt, bt) and qϕh
(πt = 1|xt, yt, bt) respectively.

Afterwards, the weights of the next two transitions, labeled with cl and c∗
l , are estimated by the posterior

qϕp
(yt = cl|xt) and qϕp

(yt ̸= cl|xt) respectively. Finally, the weights of the last two transitions, marked with
H and S, are estimated by the posterior qϕb

(bt = 0|xt) and qϕb
(bt = 1|xt) respectively. The details of how

these posteriors are estimated will be introduced in Sec. 6.2.

Given all the weights in the sentence-level ML-FSA available, a typical dynamic programming (DP) algorithm
can be used to find the optimal path which yields the maximum probability, whereby B̂ and Π̂ are backtracked
along the optimal DP path. Meanwhile, the optimal DP path also yields the mismatch localization result Ĉ.
More details are given in Appendix A.

6.2 Step 2: Learning Model Parameters Φ

In this section, we present how ML-VAE’s parameters Φ = {ϕp, ϕb, ϕh} are learned given the estimated Ψ̂
obtained from the previous stage. Implementation and parameterization details can be found in Appendix
E. Different objectives are proposed for ϕp, ϕb, and ϕh.

6.2.1 Boundary Detector ϕb

The boundary detector takes the speech feature sequence X as input and outputs the probability qϕb
(bt|xt).

The boundary variable bt is drawn from a Bernoulli distribution parameterized by an auxiliary latent variable
ηt, that is, bt ∼ Bernoulli(ηt), where we assume ηt follows a Beta distribution: ηt ∼ Beta(α, β). Therefore
here we models an auxiliary distribution qϕb

(ηt|xt). As introduced, we use the forced alignment result
sequence B̄ = (b̄1, ..., b̄T ) as the pseudo-label to aid the training process. The training objective is to
minimize the loss Lb:

Lb(ϕb; B̄) = −
T∑

t=1

(
Eqϕb

(ηt|xt)
[

log p(bt = b̄t|ηt)
]

− λbDKL(qϕb
(ηt|xt)||p(ηt))

)
, (3)

where λb is a hyperparameter controlling the weight of the KL term, qϕb
(ηt|xt) is the approximate posterior

distribution, and p(ηt) is the prior distribution of ηt.

Note that no human annotation is required when obtaining the forced alignment result sequence B̄, since B̄
is obtained with X and C as inputs without using any human annotation of mispronounced phonemes in C.

6.2.2 Phoneme Estimator ϕp

Similar to the boundary detector, the phoneme estimator takes the speech feature sequence X as input and
outputs the probability qϕp

(yt|xt). We use the pseudo label C̃ = (c̃1, ..., c̃T ) as our training target, which can
be obtained by extending the phoneme sequence C according to the estimated duration of each phoneme in
B̄. Therefore, the model is optimized by minimizing the negative log-likelihood:

Lp(ϕp; C) = −
T∑

t=1
log(qϕp(yt = c̃t|xt)). (4)

6.2.3 Speech Generator ϕh

The speech generator ϕh aims to reconstruct the input speech feature sequence. It takes the speech feature
sequence X , along with the estimated values of the latent variables Ŷ and B̂ as input and reconstructs the
speech feature sequence following the generation process discussed in Section 4.

We use the variational inference to learn the speech generator ϕh and thus the ELBO loss is calculated by:
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Lr(ϕh) = −
T∑

t=1

(
Eqϕh

(ht|xt)
[

log pϕh
(xt|ht)

]
− λrDKL(qϕh

(ht|xt)||p(ht))
)

(5)

where λr controls the weight of the KL term, qϕh
(ht|xt) is the approximate posterior distribution, and p(ht)

is the prior distribution of ht.

Besides, we also augment the ELBO using the estimated correctness variable sequence Π̂ obtained from Step
1 (E Step) as a supervision signal and the new loss is written as:

Lh(ϕh; Ψ̂) = Lr(ϕh) + λlLl(ϕh; Ψ̂), (6)

where λl is an importance weight; Ll(ϕh; Ψ̂) is the negative log-likelihood loss, which is computed by:

Ll(ϕh; Ψ̂) = −
T∑

t=1
log qϕh

(πt = π̂t|xt, yt, bt), (7)

where qϕh
(πt|xt, yt, bt) is the approximate posterior distribution.

6.3 Overall Learning Algorithm

The overall algorithm to learn ML-VAE is shown in Algorithm 1.

Algorithm 1 Learning ML-VAE
Input: Speech feature sequence X , phoneme sequence C
Output: Mismatch localization result Ĉ

1: Initialize the model parameters ϕp, ϕb, and ϕh.
2: Obtain the forced alignment result B̄.
3: while not converged do
4: Estimate B̂ and Π̂ with ML-FSA.
5: Using Eq. 4, optimize ϕp with the phoneme sequence C.
6: Using Eq. 3, with the help of B̄, optimize ϕb.
7: Given Π̂, optimize ϕh using Eq. 6.
8: end while
9: Obtain the mismatch localization result Ĉ with ML-FSA.

10: return Ĉ

7 ML-VAE with REINFORCE Algorithm

In practice, we found that the training procedure is sometimes not stable due to large gradient variance. We
suspect this is due to the sampling process of the discrete latent variables (such as πt). To overcome such an
issue and better reason about the distribution of the correctness variable during training, we further propose
a variant of ML-VAE that uses the REINFORCE algorithm (Williams, 1992), which we call ML-VAE-RL.

Following the work by Xu et al. (2015), the reward term is defined as R(Π) = Lh(ϕh; Ψ̂), and to further
reduce the gradient variance, a baseline term b(X ) is introduced to calculate the calibrated reward term
R̂(Π) = R(Π) − b(X ). b(X ) is estimated by a fully-connected neural network and trained by minimizing
the mean squared error (MSE) between b(X ) and the uncalibrated reward R(Π): MSE(b(X ), R(Π)) =
1
T

∑T
t=1[b(xt) − R(πt)]2.

Then we define the new optimization objective Lrl(ϕh; Ψ̂) whose gradient with respect to the model param-
eters ϕh can be calculated with the Monte Carlo method:

9
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∇ϕh
Lrl(ϕh; Ψ̂) =

Nmc∑
i=1

(
∇ϕh

Lh(ϕh; Ψ̂) + R̂(Π(i))∇ϕh

[
− log qϕh

(Π(i) = Π̂|X , Y, B)
])

− ∇ϕh
H[Π], (8)

where H[π] is the entropy of the distribution of the correctness variable whose gradient can be calculated
explicitly. Nmc is the number of Monte Carlo samples, and Π(i) is the i-th sample drawn from the posterior
distribution Π|X , Y, B.

With the help of the REINFORCE algorithm, Step 7 in Algorithm 1 is replaced by optimizing with Eq. 8
so that ϕh is reinforced to sample the correctness variable sequence Π that produces lower Lh(ϕh; Ψ̂).

8 Experiments

We evaluate our proposed ML-VAE and ML-VAE-RL on the mispronunciation localization task to test their
mismatch localization ability. We first conduct experiments on a synthetic dataset (Mismatch-AudioMNIST)
and then further apply our proposed models to a real-world speech-text dataset (L2-ARCTIC).

8.1 Evaluation Metrics

The F1 score is a commonly used metric to evaluate binary classification tasks, e.g., mispronunciation de-
tection (Leung et al., 2019). However, we find that F1 score is not suitable to evaluate the mispronunciation
localization task, as it is computed without evaluating if the model successfully locates the detected mispro-
nunciations in speech.

As such, we improve upon the traditional F1 score by proposing a set of new evaluation metrics. For each
true positive (TP) case, we calculate the intersection over union (IoU) metric of its corresponding phoneme
segment, which demonstrates the performance of localization. IoU is computed by IoU = I

U , where I and
U are the intersection length and the union length obtained by comparing the detected phoneme segment
with the ground truth phoneme segment. Then such IoU metrics of all TP cases are summed and denoted
as TPML. After calculating TPML, the TP in equations to calculate the F1 score is replaced with TPML to
calculate our proposed metrics. For example, if there are two TP cases detected by the model, then instead of
calculating F1 score with TP = 2, we calculate the IoU of these two cases’ corresponding phoneme segment,
e.g. 0.3 and 0.6 respectively. Then we calculate our proposed metrics with TPML = 0.3 + 0.6. Our proposed
metrics are denoted as mismatch localization precision (PRML), recall (REML), and F1 score (F1ML).

To be more specific, we first calculate the the intermediate metrics: true positive (TP), true negative (TN),
false positive (FP), and false negative (FN). Then for all the TP cases detected by the model, we take the
sum of their corresponding segments’ intersection over union (IoU), which is denoted as TPML. Then the
final metrics are computed as: PRML = TPML

TP+FP , REML = TPML
TP+FN , F1ML = 2×PRML×REML

PRML+REML

8.2 Baselines

To our knowledge, there is no existing work specifically designed for mispronunciation localization. Therefore,
we adapt some existing methods on related tasks (e.g. ASR) to perform mispronunciation localization, and
compare our proposed two ML-VAE models with them:

• FA (McAuliffe et al., 2017), which performs forced alignment using a deep-neural-network-HMM-
based (DNN-HMM-based) acoustic model.

• Two-Pass-FA (Tebelskis, 1995), which first performs phoneme recognition based on a DNN-HMM-
based acoustic model and then performs forced alignment on the recognized phoneme sequence and
input speech.

• w2v-CTC (Baevski et al., 2020), which is built with wav2vec 2.0 and trained with CTC loss;
CTC-segmentation (Kürzinger et al., 2020) is used to align the recognized phonemes with speech.
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All models above are trained under the same problem setting where no human annotated data is used, i.e.
only the speech feature sequence X and phoneme sequence C which contains mismatch are used during the
training process.

8.3 Synthetic Dataset: Mismatch-AudioMNIST

We first test our proposed models on a synthetic dataset, named as Mismatch-AudioMNIST, which is
built based on the AudioMNIST (Becker et al., 2018) dataset. Our synthetic dataset contains 3000 audio
samples, each produced by concatenating three to seven spoken digits randomly selected from the original
AudioMNIST. To simulate the content mismatch between audio and the corresponding text annotations, we
randomly select 20.1% of the spoken digits as mismatched content, thereby labeling them as random digits.
The total duration of Mismatch-AudioMNIST is 2.67 hours. The dataset is split into training, validation, and
test sets by a 60:20:20 ratio, and the durations of the three sets are 96.3, 33.2, and 30.6 minutes respectively.

Table 1: Mispronunciation localization results on Mismatch-AudioMNIST.

Model # Params PRML% REML% F1ML%
FA 3.3M 0.00 0.00 0.00
Two-Pass-FA 3.3M 6.22 2.43 2.28
w2v-CTC 352.5M 1.72 3.84 2.30
ML-VAE (ours) 24M 28.42 27.60 27.67
ML-VAE-RL (ours) 25M 30.67 30.32 30.28

Mispronunciation Local-
ization Results Table 1
shows the mispronunciation
localization results of ML-
VAE and ML-VAE-RL on the
synthetic dataset Mismatch-
AudioMNIST. We can see that
all three baselines perform
poorly for our mismatch lo-
calization task. More specifi-
cally, the vanilla forced align-
ment model (FA) fails to locate any mispronunciations due to its assumption that all the digits are correctly
pronounced. Both of our proposed models (ML-VAE and ML-VAE-RL) are much superior to the baseline
models, Two-Pass-FA and w2v-CTC, demonstrating the effectiveness of the proposed method in handling
the unsupervised mismatch localization task. Note that in our problem settings, our training data con-
tains mislabeled spoken digits and such mislabelling is unknown. This poses great challenges for acoustic
model training. By further looking into the recognition results of Two-Pass-FA and w2v-CTC, we find that
their recognition results from the acoustic model are very poor in terms of the mislabeled spoken digits,
consequently limiting the baseline models’ ability to detect such mislabels in the second stage processing.

8.4 Real-World Dataset: L2-ARCTIC

We further apply ML-VAE and ML-VAE-RL to a real-world dataset: the L2-ARCTIC dataset (Zhao et al.,
2018), which is a non-native English corpus containing 11026 utterances from 24 non-native speakers. Note
that to evaluate mismatch localization, each annotated phoneme in the dataset needs to come with an onset
and offset time label; to the best of our knowledge, the L2-ARCTIC dataset is currently the only real-world
dataset suitable for this problem setting.

Table 2: Mispronunciation localization results on L2-ARCTIC.

Model # Params PRML% REML% F1ML%
FA 3.3M 0.00 0.00 0.00
Two-Pass-FA 3.3M 0.64 0.96 0.77
w2v-CTC 352.5M 1.29 2.26 1.64
ML-VAE (ours) 24M 6.46 11.97 8.39
ML-VAE-RL (ours) 25M 8.20 13.57 10.22

Mispronunciation Lo-
calization Results As
shown in Table 2, similar
to the results on Mismatch-
AudioMNIST, Our ML-VAE
models dramatically out-
perform Two-Pass-FA and
w2v-CTC in all three met-
rics. Compared with original
ML-VAE, the variant with
REINFORCE algorithm
yields better localization performance of mispronunciation.

11



Published in Transactions on Machine Learning Research (12/2022)

Interestingly, though w2v-CTC is based on a powerful wav2vec 2.0 acoustic model, which shows superior
performance for ASR, it does not work well on the mispronunciation localization task; even with the largest
number of parameters, it only slightly outperforms Two-Pass-FA, and underperforms our ML-VAE by a large
margin. Our further analysis on w2v-CTC’s output shows that such poor performance is mainly caused by
the dataset which contains unknown content mismatches between the speech data and the corresponding
text; w2v-CTC is fine-tuned on the speech data with mispronunciations, and therefore its recognition results
tend to contain mispronunciations as well. For example, if a speaker always mispronounces the phoneme
‘b’ as ‘d’, a w2v-CTC model trained with such data tends to predict ‘d’, instead of ‘b’ during inference.
Another reason for w2v-CTC’s poor performance is that the CTC-segmentation algorithm assumes correct
pronunciations and therefore does not work well on speech-text sequences containing mispronunciations.

Some more experiments are performed to demonstrate how traditional alignment methods fail on speech and
text inputs with mispronunciations and such experimental results can be found in Appendix F.

Ablation Study We present ablation study results to demonstrate the effectiveness of our proposed learn-
ing algorithm. Table 3 shows the results of ML-VAE-RL optimized with B̂ instead of B̄. The first row shows
that directly using B̂ leads to very poor mispronunciation localization performance. The second row shows
that our proposed optimization method effectively improves upon the traditional joint optimization method.

Table 3: Ablation study results.

Model PRML% REML% F1ML%

Ablation 1: ML-VAE-RL using B̂ instead of B̄ for optimization 2.31 1.53 1.84
Ablation 2: ML-VAE-RL w/ joint optimization 4.90 2.89 3.64
Ablation 3: ML-VAE-RL w/ B̂ & Ŷ estimated separately 7.31 10.85 8.73
ML-VAE (ours) 6.46 11.97 8.39
ML-VAE-RL (ours) 8.20 13.57 10.22

The third ablation study compares our estimation method with a traditional one, which estimates B̂ and
Π̂ separately based on a single-path FSA. Details on this traditional algorithm can be found in Appendix
B. Compared with this ablation model, our proposed ML-VAE-RL yields better results. This proves the
effectiveness of our proposed estimation algorithm, which is specifically designed for the mismatch localization
task.

9 Conclusions and Future Work

In this work, we present a hierarchical Bayesian deep learning model to address the mismatch localization
problem in cross-modal sequential data. More specifically, two variants are proposed, namely ML-VAE
and ML-VAE-RL. We also propose a learning algorithm to optimize our proposed ML-VAE. We focus on
applying ML-VAE to the speech-text mismatch localization problem and propose a set of new metrics to
evaluate the model’s mispronunciation localization performance. Our experimental results show that it can
achieve superior performance than existing methods, including the powerful wav2vec 2.0 acoustic model. We
also perform ablation studies to verify the effectiveness of our training algorithm. One of the future research
directions of this project is how to extend ML-FSA to address the case where multiple correct pronunciations
exist.
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A MAP estimation of B̂ and Π̂

Given the sentence-level ML-FSA introduced in Sec. 5, the MAP estimate of B̂ and Π̂ can be obtained by
maximizing the following posterior distribution:

p(y|x) ∝ p(y)p(x|y)

=
T∏

t=1
p(yt|y1, ..., yt−1)p(xt|yt)

=
T∏

t=1
p(yt|y1, ..., yt−1)p(yt|xt)p(xt)

p(yt)

a
≈

T∏
t=1

p(yt|y1, ..., yt−1)
qϕp

(yt|xt)p(xt)
p(yt)

b∝
T∏

t=1
p(yt|y1, ..., yt−1)

qϕp
(yt|xt)

p(yt)
,

(9)

where in step a, p(yt|xt) is approximated by qϕp
(yt|xt). In step b, the constant term p(xt) is dropped.

p(yt) is the prior of yt, which is usually estimated with the frequencies of different phonemes in the training
dataset. qϕp

(yt|xt) is the approximate posterior, which can be computed using the phoneme estimator.
p(yt|y1, ..., yt−1) is the transition probability which is determined by p(bt) and p(πt). Concretely, when
calculating the transition probability p(yt|y1, ..., yt−1) given the sentence-level FSA, three different cases are
considered: (1) the consecutive frames belong to the same segment; (2) the consecutive two frames belong to
different segments, and the current segment matches the phoneme sequence; (3) the consecutive two frames
belong to different segments, and the current segment contains content mismatch (i.e., a mispronounced
phoneme). Corresponding to these three cases, we have:

p(yt|y1, ..., yt−1) =


p(bt = 0), if yt = yt−1

p(bt = 1)p(πt = 0), if yt ̸= yt−1 and yt ∈ C
p(bt = 1)p(πt = 1), if yt ̸= yt−1 and yt ∈ C∗,

(10)

where C∗ = (c∗
1, ..., c∗

L) denotes the mismatched elements in the phoneme sequence C (i.e. mispronounced
phonemes)2. p(πt = 0) and p(πt = 1) are approximated by qϕh

(πt = 0|xt, yt, bt) and qϕh
(πt = 1|xt, yt, bt),

which can be calculated using the speech generator. Similarly, p(bt = 0) and p(bt = 1) are approximated by
qϕb

(bt = 0|xt) and qϕb
(bt = 1|xt), which can be obtained from the boundary detector.

Generally, the MAP estimation of B̂ and Π̂ can be written as:

B̂, Π̂ = argmax
B,Π

JB-Π(B, Π; Φ)

= argmax
B,Π

T∏
t=1

p(yt|y1, ..., yt−1)
qϕp(yt|xt)

p(yt)
.

(11)

In practice, MAP estimation is achieved by following Eq. 11 and searching for the optimal path in ML-FSA,
which can be solved by a DP algorithm.

2Note that strictly speaking, here we are approximating p(yt|y1, ..., yt−1) using p(yt|y1, ..., yt−1, c1, ..., ct), where c1, ..., ct

are the known canonical phonemes.
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B Estimating B̂ and Π̂ separately

In this section, we describe the algorithm which estimates the hard assignments for B̂ and Π̂ separately. This
algorithm is used to perform the ablation study.

B.1 Estimation of B̂

Being different from our joint estimation algorithm discussed in the main paper, the boundary variable B̂ is
first estimated without considering the correctness of the pronunciation.

When estimating B̂, we adopt the single-path FSA. Fig. 6 demonstrates the partial FSA for the l-th phoneme.
From the initial state 0, there is only one path pointing to state 1, standing for the l-th phoneme, cl. Then
at each time step, since each phoneme may last for several frames, it either still holds at state 1 (denoted
by H), or moves forward to the final state 2 (denoted by S). The sentence-level FSA can be constructed by
connecting all phoneme-level FSA together, according to the input phoneme sequence C.

10 2

Figure 6: Single-path FSA.

Based on such an FSA, the weights on the transitions can be estimated by ML-VAE in a similar manner as
described in Sec. 6.1. Then a DP algorithm can be used to find the optimal path in the sentence-level FSA,
after which the estimated B̂ can be obtained by backtracking along the optimal path.

B.2 Estimation of Π̂

We then estimate Π̂ given the B̂ obtained in the above procedure. If we are given the l-th phoneme segment
which starts at u-th frame and ends at the v-th frame, we assume that all frames within this segment
share the same pronunciation correctness label, that is, πu = πu+1 = · · · = πv = π′

l, where π′
l denotes the

pronunciation correctness of the l-th phoneme.

Therefore, similar to Eq. 11, we can obtain the MAP estimation of π′
l per segment:

π̂′
l = argmax

π′
l

v∏
t=u

p(yt|y1, ..., yt−1)
qϕp

(yt|xt)
p(yt)

= argmax
π′

l

{
p(πs = 0)

∏v
t=u

qϕp (yt=cl|xt)
p(yt=cl) , if π′

l = 0
p(πs = 1)

∏v
t=u

qϕp (yt ̸=cl|xt)
p(yt ̸=cl) , if π′

l = 1,
(12)

where qϕp
(yt|xt), qϕp

(yt = cl|xt), and qϕp
(yt ̸= cl|xt) are the approximate posteriors. yt = cl denotes that the

t-th frame is correctly pronounced (π′
l = 0). yt ̸= cl denotes that the t-th frame is mispronounced (π′

l = 1),
that is, qϕp

(yt ̸= cl|xt) = 1 − qϕp
(yt = cl|xt), and p(yt ̸= cl) = 1 − p(yt = cl).

C Case Study of ML-VAE

Besides quantitative analysis, we also provide a case study to showcase ML-VAE-RL in Fig. 7. Each rectangle
in Fig. 7 represents one phoneme segment. The first and second rows show the input phoneme sequence
and the actual phonemes pronounced by the speaker, respectively. The last row shows ML-VAE-RL’s
mispronunciation localization result. In the last row, a phoneme with a star sign (e.g. ‘t*’) indicates that
ML-VAE-RL detects a mispronounced phoneme (e.g. a mispronounced ‘t’). It is shown that ML-VAE
successfully detects three out of four mispronunciations with a reasonable localization result.
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s g ae eh err err t ng dh t

t g ae dh err s aw ng dh t

s* g ae eh err

err*

t* ng dh tModel output

Pronounced phonemes

Input phonemes

Case study for utterance YKWK_a0442

Figure 7: Case study for the last ten phonemes of the utterance YKWK_a0442. The first and second rows
show the input phonemes and the actual phonemes pronounced by the speaker, respectively. The last row
shows ML-VAE’s predicted mispronunciation localization result.

D Case Study of Ablation Models

Fig. D shows the case study with the outputs of three ablation models presented in Table 3. It is shown that
the joint optimization model yields the worst outputs because the poor alignment results. Compared with
the other two ablation models, ML-VAE clearly outperforms them in terms of localizing the mispronounced
phonemes.
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E Implementation Details

In this section, we introduce the implementation details of ML-VAE. The input feature sequence X is
obtained by calculating the 40-dimension FBANK feature Young et al. (2002) from the speech signal. The
phoneme sequence C is obtained from the text which is read by the speaker.

E.1 Boundary Detector

The boundary detector includes two LSTM layers, each with 512 nodes, followed by two fully connected
(FC) layers with 128 nodes and ReLU activations. They are followed by two separate output layers, each
of which has only one node and a Softplus activation function. The output of these two layers is used to
estimate the parameters α and β to sample vt, which is further used to sample bt. The weight of the KL
term λb is set as 0.01.

E.2 Phoneme Estimator

The phoneme estimator contains two LSTM layers; each LSTM layer has 512 nodes, followed by two FC
layers, each with 128 nodes and ReLU. They are followed by a Softmax layer to give the estimation of the
phoneme.

E.3 Speech Generator

We adopt an encoder-decoder architecture to implement the speech generator. The encoder consists of three
FC layers, each with 32 nodes, followed by four LSTM layers, each with 512 nodes. We use a FC layer with
512 nodes and ReLU to estimate the mean and variance of the Gaussian components. The decoder contains
four bidirectional SRU layers (Lei et al., 2018), each with 512 nodes. They are followed by two FC layers,
each with 120 nodes, to estimate the mean and variance of the data distribution. During training, λr and
λl are set to 1 and 0.001, respectively.

Gaussian Component Selection As described in the generative process, the Gaussian component indi-
cator zt is sampled from zt|yt, πt, bt ∼ Categorical(fz(yt, bt, πt)). In this section, we describe the implemen-
tation of fz(·), which is defined as fz(yt, bt, πt) = softmax(ρt ∗ ϵ + δt), where ρt is a scalar estimated by a
two-layer multilayer perceptron (MLP) taking as inputs yt, bt, and πt. Each layer of the MLP contains 128
nodes and a Sigmoid activation function; ϵ is a small constant, which is set as 1 × 10−6 in our experiments;
δt is an one-hot variable, i.e. δt[s] = 1, and s is computed by:

s =
{

(j − 1) ∗ (Nm + 1) + 1, if πt = 0
(j − 1) ∗ (Nm + 1) + 1 + k, if πt = 1,

(13)

where j denotes the phoneme label of yt, i.e. yt[j] = 1. In case that yt is mispronounced, k ∈ [1, Nm] denotes
the k-th mispronunciation variant of the phoneme yt, which is implemented by a Gumbel Softmax function
(Jang et al., 2016), i.e. τt = Gumbel(NN(xt, yt)), where τt[k] = 1 and NN is a simple neural network with
three 128-node FC layers .

F Experimental Results of the Alignment Task

This section provides some experimental results of aligning speech and text inputs that contain mispro-
nunciation, as shown in Table 4. Experiments are performed on the real-world dataset L2-ARCTIC. The
intersection-over-union (IoU) is calculated for every phoneme in the input text and then averaged to evaluate
the alignment performance. The experimental results show that the baselines, both the traditional forced
alignment method and the CTC alignment algorithm, fail to yield reasonable alignment results, while our
proposed ML-VAE and ML-VAE-RL can outperform both baselines in this task. Such results demonstrate
the traditional alignment results would fail when there is mismatch in the inputs. For example, if there is
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Table 4: Experimental results of aligning speech and text inputs with misproununciation on the L2-ARCTIC
dataset.

Model Average IoU (%)
Two-Pass-FA 4.68
w2v-CTC 5.73
ML-VAE (ours) 44.27
ML-VAE-RL (ours) 53.02

a mispronunciation in the middle of a sentence, it may cause errors in traditional alignment methods (e.g.,
forced alignment). Then such errors may accumulate and further degrade the alignment performance of the
phonemes after the mispronounced one.
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