Collaborative Deep Learning and Its Variants for Recommender Systems

Hao Wang

Joint work with Naiyan Wang, Xingjian Shi, and Dit-Yan Yeung

Recommender Systems

Recommender Systems with Content

Content information: Plots, directors, actors, etc.

Modeling the Content Information

Handcrafted features

Automatically learn features and adapt for ratings

Modeling the Content Information

1. Powerful features for content information

2. Feedback from rating information Non-i.i.d.

Collaborative deep learning

Deep Learning

Stacked denoising autoencoders

Convolutional neural networks

 $P(\mathbf{y}_t \mid \mathbf{h}_t)$

y i

 $\hat{y}_t \sim P(\mathbf{y}_t \mid \mathbf{h}_t)$

Recurrent neural networks

Typically for i.i.d. data

Modeling the Content Information

1. Powerful features for content information

Deep learning

2. Feedback from rating information Non-i.i.d.

Collaborative deep learning (CDL)

Contribution

•Collaborative deep learning:

- * deep learning for non-i.i.d. data
- * joint representation learning and collaborative filtering

Contribution

Collaborative deep learning

•Complex target:

* beyond targets like classification and regression

* to complete a low-rank matrix

Contribution

- Collaborative deep learning
- Complex target
- First hierarchical Bayesian models for deep hybrid recommender system

Related Work

Not hybrid methods (ratings only)
RBM (single layer, Salakhutdinov et al., 2007)
I-RBM/U-RBM (Georgiev et al., 2013)
Not using Bayesian modeling for joint learning
DeepMusic (van den Oord et al., 2013)
HLDBN (Wang et al., 2014)

Stacked Denoising Autoencoders (SDAE)

Corrupted input

Clean input

SDAE solves the following optimization problem:

$$\min_{\{\mathbf{W}_l\},\{\mathbf{b}_l\}} \|\mathbf{X}_c - \mathbf{X}_L\|_F^2 + \lambda \sum_l \|\mathbf{W}_l\|_F^2,$$

where λ is a regularization parameter and $\|\cdot\|_F$ denotes the Frobenius norm. [Vincent et al. 2010]

Probabilistic Matrix Factorization (PMF)

Graphical model:

Notation:

- \mathbf{v}_{i}) latent vector of item j
- $\overline{\mathbf{U}_{i}}$ latent vector of user i
- **R**_{ij} rating of item j from user i

Generative process:

$$= \prod_{i=1}^{N} \mathcal{N}(U_i|0, \sigma_U^2 \mathbf{I}) \qquad p(V|\sigma_V^2) = \prod_{j=1}^{M} \mathcal{N}(V_j|0, \sigma_V^2 \mathbf{I})$$
$$p(R|U, V, \sigma^2) = \prod_{i=1}^{N} \prod_{j=1}^{M} \left[\mathcal{N}(R_{ij}|U_i^T V_j, \sigma^2) \right]^{I_{ij}}$$

Objective function if using MAP:

 $p(U|\sigma_U^2) =$

$$E = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{M} I_{ij} (R_{ij} - U_i^T V_j)^2 + \frac{\lambda_U}{2} \sum_{i=1}^{N} \| U_i \|_{Fro}^2 + \frac{\lambda_V}{2} \sum_{j=1}^{M} \| V_j \|_{Fro}^2$$
[Salakhutdinov et al. 2008]

Probabilistic SDAE

Graphical model:

Generative process:

Collaborative Deep Learning (CDL)

Graphical model:

Collaborative deep learning

SDAE

Two-way interaction

More powerful representation
Infer missing ratings from content
Infer missing content from ratings

A Principled Probabilistic Framework

16

[Wang et al. TKDE 2016]

CDL with Two Components

Graphical model:

Neural network representation for degenerated CDL

corrupted

18

maximizing the posterior probability is equivalent to maximizing the joint log-likelihood

$$\mathcal{L} = -\frac{\lambda_u}{2} \sum_i \|\mathbf{u}_i\|_2^2 - \frac{\lambda_w}{2} \sum_l (\|\mathbf{W}_l\|_F^2 + \|\mathbf{b}_l\|_2^2)$$
$$-\frac{\lambda_v}{2} \sum_j \|\mathbf{v}_j - \mathbf{X}_{\frac{L}{2},j*}^T\|_2^2 - \frac{\lambda_n}{2} \sum_j \|\mathbf{X}_{L,j*} - \mathbf{X}_{c,j*}\|_2^2$$
$$-\frac{\lambda_s}{2} \sum_l \sum_j \|\sigma(\mathbf{X}_{l-1,j*}\mathbf{W}_l + \mathbf{b}_l) - \mathbf{X}_{l,j*}\|_2^2$$
$$-\sum_{i,j} \frac{\mathbf{C}_{ij}}{2} (\mathbf{R}_{ij} - \mathbf{u}_i^T \mathbf{v}_j)^2.$$

 $\backslash \wedge_u / \neg$

Prior (regularization) for user latent vectors, weights, and biases

$$\mathcal{L} = -\frac{\lambda_u}{2} \sum_i \|\mathbf{u}_i\|_2^2 - \frac{\lambda_w}{2} \sum_l (\|\mathbf{W}_l\|_F^2 + \|\mathbf{b}_l\|_2^2)$$
$$-\frac{\lambda_v}{2} \sum_j \|\mathbf{v}_j - \mathbf{X}_{\frac{L}{2},j*}^T\|_2^2 - \frac{\lambda_n}{2} \sum_j \|\mathbf{X}_{L,j*} - \mathbf{X}_{c,j*}\|_2^2$$
$$-\frac{\lambda_s}{2} \sum_l \sum_j \|\sigma(\mathbf{X}_{l-1,j*}\mathbf{W}_l + \mathbf{b}_l) - \mathbf{X}_{l,j*}\|_2^2$$
$$-\sum_{i,j} \frac{\mathbf{C}_{ij}}{2} (\mathbf{R}_{ij} - \mathbf{u}_i^T \mathbf{v}_j)^2.$$

Generating item latent vectors from content representation with Gaussian offset $-\frac{\lambda_u}{2}\sum_{i} \|\mathbf{u}_i\|_2^2 - \frac{\lambda_w}{2}\sum_{i} (\|\mathbf{W}_l\|_F^2 + \|\mathbf{b}_l\|_2^2)$ $\frac{\lambda_{v}}{2} \sum_{i} \|\mathbf{v}_{j} - \mathbf{X}_{\frac{L}{2}, j*}^{T}\|_{2}^{2} - \frac{\lambda_{n}}{2} \sum_{i} \|\mathbf{X}_{L, j*} - \mathbf{X}_{c, j*}\|_{2}^{2}$ $-\frac{\lambda_s}{2}\sum_l \sum_l \|\sigma(\mathbf{X}_{l-1,j*}\mathbf{W}_l + \mathbf{b}_l) - \mathbf{X}_{l,j*}\|_2^2$ $-\sum_{i=1}^{T} \frac{\mathbf{C}_{ij}}{2} (\mathbf{R}_{ij} - \mathbf{u}_i^T \mathbf{v}_j)^2.$

'Generating' clean input from the output of probabilistic SDAE with Gaussian offset

$$\mathcal{L} = -\frac{\lambda_u}{2} \sum_i \|\mathbf{u}_i\|_2^2 - \frac{\lambda_w}{2} \sum_l (\|\mathbf{W}_l\|_F^2 + \|\mathbf{b}_l\|_2^2)$$
$$-\frac{\lambda_v}{2} \sum_j \|\mathbf{v}_j - \mathbf{X}_{\frac{L}{2},j*}^T\|_2^2 - \frac{\lambda_n}{2} \sum_j \|\mathbf{X}_{L,j*} - \mathbf{X}_{c,j*}\|_2^2$$
$$-\frac{\lambda_s}{2} \sum_l \sum_j \|\sigma(\mathbf{X}_{l-1,j*}\mathbf{W}_l + \mathbf{b}_l) - \mathbf{X}_{l,j*}\|_2^2$$
$$-\sum_{i,j} \frac{\mathbf{C}_{ij}}{2} (\mathbf{R}_{ij} - \mathbf{u}_i^T \mathbf{v}_j)^2.$$

Generating the input of Layer I from the output of Layer I-1 with Gaussian offset

$$\mathcal{L} = -\frac{\lambda_u}{2} \sum_i \|\mathbf{u}_i\|_2^2 - \frac{\lambda_w}{2} \sum_l (\|\mathbf{W}_l\|_F^2 + \|\mathbf{b}_l\|_2^2)$$
$$-\frac{\lambda_v}{2} \sum_j \|\mathbf{v}_j - \mathbf{X}_{\frac{L}{2},j*}^T\|_2^2 - \frac{\lambda_n}{2} \sum_j \|\mathbf{X}_{L,j*} - \mathbf{X}_{c,j*}\|_2^2$$
$$-\frac{\lambda_s}{2} \sum_l \sum_j \|\sigma(\mathbf{X}_{l-1,j*}\mathbf{W}_l + \mathbf{b}_l) - \mathbf{X}_{l,j*}\|_2^2$$
$$-\sum_{i,j} \frac{\mathbf{C}_{ij}}{2} (\mathbf{R}_{ij} - \mathbf{u}_i^T \mathbf{v}_j)^2.$$

measures the error of predicted ratings

$$\mathscr{L} = -\frac{\lambda_u}{2} \sum_i \|\mathbf{u}_i\|_2^2 - \frac{\lambda_w}{2} \sum_l (\|\mathbf{W}_l\|_F^2 + \|\mathbf{b}_l\|_2^2)$$
$$-\frac{\lambda_v}{2} \sum_j \|\mathbf{v}_j - \mathbf{X}_{\frac{L}{2},j*}^T\|_2^2 - \frac{\lambda_n}{2} \sum_j \|\mathbf{X}_{L,j*} - \mathbf{X}_{c,j*}\|_2^2$$
$$-\frac{\lambda_s}{2} \sum_l \sum_j \|\sigma(\mathbf{X}_{l-1,j*}\mathbf{W}_l + \mathbf{b}_l) - \mathbf{X}_{l,j*}\|_2^2$$
$$-\sum_{i,j} \frac{\mathbf{C}_{ij}}{2} (\mathbf{R}_{ij} - \mathbf{u}_i^T \mathbf{v}_j)^2.$$

27

 \mathbf{x}_2

 $\mathbf{-}(\mathbf{u})_{I}$

 (λ_u)

If λ_s goes to infinity, the likelihood simplifies to

$$\begin{aligned} \mathscr{L} &= -\frac{\lambda_u}{2} \sum_i \|\mathbf{u}_i\|_2^2 - \frac{\lambda_w}{2} \sum_l (\|\mathbf{W}_l\|_F^2 + \|\mathbf{b}_l\|_2^2) \\ &- \frac{\lambda_v}{2} \sum_j \|\mathbf{v}_j - f_e(\mathbf{X}_{0,j*}, \mathbf{W}^+)^T\|_2^2 \\ &- \frac{\lambda_n}{2} \sum_j \|f_r(\mathbf{X}_{0,j*}, \mathbf{W}^+) - \mathbf{X}_{c,j*}\|_2^2 \\ &- \sum_{i,j} \frac{\mathbf{C}_{ij}}{2} (\mathbf{R}_{ij} - \mathbf{u}_i^T \mathbf{v}_j)^2, \end{aligned}$$

Update Rules

For U and V, use block coordinate descent:

$$\mathbf{u}_{i} \leftarrow (\mathbf{V}\mathbf{C}_{i}\mathbf{V}^{T} + \lambda_{u}\mathbf{I}_{K})^{-1}\mathbf{V}\mathbf{C}_{i}\mathbf{R}_{i}$$

$$\mathbf{v}_{j} \leftarrow (\mathbf{U}\mathbf{C}_{i}\mathbf{U}^{T} + \lambda_{v}\mathbf{I}_{K})^{-1}(\mathbf{U}\mathbf{C}_{j}\mathbf{R}_{j} + \lambda_{v}f_{e}(\mathbf{X}_{0,j*}, \mathbf{W}^{+})^{T})$$
For W and b, use a modified version of backpropagation
$$\nabla_{\mathbf{W}_{l}}\mathscr{L} = -\lambda_{w}\mathbf{W}_{l}$$

$$-\lambda_{v}\sum_{j}\nabla_{\mathbf{W}_{l}}f_{e}(\mathbf{X}_{0,j*}, \mathbf{W}^{+})^{T}(f_{e}(\mathbf{X}_{0,j*}, \mathbf{W}^{+})^{T} - \mathbf{v}_{j})$$

$$-\lambda_{n}\sum_{j}\nabla_{\mathbf{W}_{l}}f_{r}(\mathbf{X}_{0,j*}, \mathbf{W}^{+})(f_{r}(\mathbf{X}_{0,j*}, \mathbf{W}^{+}) - \mathbf{X}_{c,j*})$$

$$\nabla_{\mathbf{b}_{l}}\mathscr{L} = -\lambda_{w}\mathbf{b}_{l}$$

$$-\lambda_{v}\sum_{j}\nabla_{\mathbf{b}_{l}}f_{e}(\mathbf{X}_{0,j*}, \mathbf{W}^{+})^{T}(f_{e}(\mathbf{X}_{0,j*}, \mathbf{W}^{+})^{T} - \mathbf{v}_{j})$$

$$-\lambda_n \sum_j \nabla_{\mathbf{b}_l} f_r(\mathbf{X}_{0,j*}, \mathbf{W}^+) (f_r(\mathbf{X}_{0,j*}, \mathbf{W}^+) - \mathbf{X}_{c,j*})$$

Datasets

	citeulike-a	citeulike-t	Netflix
#users	5551	7947	407261
#items	16980	25975	9228
#ratings	204987	134860	15348808

Titles and abstracts Titles and abstracts

Collaborative Deep Learning for Recommender Systems ABSTRACT

ABSTRUCE Childrawism (Bring (CF)) is a successful approach sum many used by many recommender system. Conventional CF loader anicelos wet her rating given to freeze by suc-many applications, using CF loader includes to degrade any applications, using CF loader includes to degrade the system of the system of the system of the system many applications, main (CF loader includes to degrade distance) and the system of the system of the system many applications, main (CF loader includes the system) applications and the system of the system of the system many applications of the system in system of the system of the system of the system part and propose in the paper a hereached layers in motion balance fiber when the paper application is very system for an oppose in the paper a hereached layers in motion balance fiber of the system of the system of the system part and propose in the paper a hereached layers in motion balance fiber of the system of the system of the system transfer of the system of the system of the system transfer of the system of the system of the system transfer of the system of the system of the system of the system transfer of the system of the system of the system of the system transfer of the system of the system of the system of the system transfer of the system of t

Collaborative Deep Learning for Recommender Systems ABSTRACT

ABSTRUCE Collaboration thirting (CD) is a successful approach sum many used by many recommercient systems. Concentrational CP loased nations on the netting genus to items by save mannehistics. Research, the ratings are afree vary parses in space spectra and the system of the start start of the system mannehistics. Research, the ratings are afree vary parses in space spectra discussion much be stiffered. Collaboration the spectra problem, sampling information work so time context information much set stiffere starts and spec-tra from two different spaces of the system of the system part context information much set stiffered and the system of the spectra problem, supersonal models. Collaboration was provided with highly complete the two components that parts from two different spaces of the system. The space part and propose in the parse a bierarchical layers model added collaborative Bierarg for the rating. (Reduced) mutrits: Extranse persements on these solutions and work in space the state of the set.

universe which alters their physical form in shocking ways. The four must learn to harness their new abilities and work together to save Earth from a former friend turned enemy.

Movie plots

[Wang et al. KDD 2011] [Wang et al. IJCAI 2013]

Content information

Evaluation Metrics

Recall:

recall@ $M = \frac{\text{number of items that the user likes among the top } M}{\text{total number of items that the user likes}}$

Mean Average Precision (mAP):

$$mAP = \frac{\sum_{q=1}^{Q} AveP(q)}{Q}$$
$$AveP = \frac{\sum_{k=1}^{n} (P(k) \times rel(k))}{\text{number of relevant items}}$$

Higher recall and mAP indicate better recommendation performance

citeulike-t, dense setting

Netflix, dense setting

Mean Average Precision (mAP)

	citeulike-a	citeulike-t	Netflix
CDL	0.0514	0.0453	0.0312
CTR	0.0236	0.0175	0.0223
DeepMusic	0.0159	0.0118	0.0167
CMF	0.0164	0.0104	0.0158
SVDFeature	0.0152	0.0103	0.0187

Exactly the same as Oord et al. 2013, we set the cutoff point at 500 for each user.

A relative performance boost of about 50%

Example User

Romance Moonstruck

# training samples	2
	Swordfish
	A Fish Called Wanda
	Terminator 2
	A Clockwork Orange
Top 10 recommended	Sling Blade
movies by \mathbf{CTR}	Bridget Jones's Diary
	Raising Arizona
	A Streetcar Named Desire
	The Untouchables
	The Full Monty
# training samples	2
	Snatch
	The Big Lebowski
	Pulp Fiction
	Kill Bill
Top 10 recommended	Raising Arizona
movies by \mathbf{CDL}	The Big Chill
	Tootsie
	Sense and Sensibility
	Sling Blade
	Gaada and a

Precision: 20% VS 30%

Example User

training samples 4 Pulp Fiction A Clockwork Orange Being John Malkovich Raising Arizona Sling Blade Top 10 recommended movies by **CTR** Swordfish A Fish Called Wanda Saving Grace COLREGTION The Graduate Action & Monster's Ball **Johnny English** # training samples 4 Drama Pulp Fiction Movies Snatch The Usual Suspect Kill Bill KEVIN SI Top 10 recommended Momento The Big Lebowski movies by **CDL** One Flew Over the Cuckoo's Nest As Good as It Gets Goodfellas AMERICAN The Matrix

American Beauty

Precision: 20% VS 50%

Example User

TONY

TOP GUN

# training samples	10
	Best in Snow
	Chocolat
	Good Will Hunting
	Monty Python and the Holy Grail
Top 10 recommended	Being John Malkovich
movies by CTR	Raising Arizona
	The Graduate
	Swordfish
	Tootsie
	Saving Private Ryan
# training samples	10
	Good Will Hunting
	Best in Show
	The Big Lebowski
	A Few Good Men
Top 10 recommended	Monty Python and the Holy Grail
movies by CDL	Pulp Fiction
	The Matrix
	Chocolat
	The Usual Suspect
	CaddyShack

Precision: 50% VS 90%
Summary: Collaborative Deep Learning

- Non-i.i.d (collaborative) deep learning
- •With a complex target
- First hierarchical Bayesian models for

hybrid deep recommender system

Significantly advance the state of the art

Marginalized CDL

CDL:

Transformation to latent factors

$$\mathscr{L} = -\frac{\lambda_u}{2} \sum_i \|\mathbf{u}_i\|_2^2 - \frac{\lambda_v}{2} \sum_j \|\mathbf{v}_j - f_e(\mathbf{X}_{0,j*}, \mathbf{W}^+)^T\|_2^2$$
$$-\frac{\lambda_n}{2} \sum_j \|f_r(\mathbf{X}_{0,j*}, \mathbf{W}^+) - \mathbf{X}_{c,j*}\|_2^2 - \sum_{i,j} \frac{\mathbf{C}_{ij}}{2} (\mathbf{R}_{ij} - \mathbf{u}_i^T \mathbf{v}_j)^2$$
$$\mathbf{Reconstruction \ error}$$

Transformation to latent factors

$$\begin{aligned} \mathscr{L} &= -\frac{\lambda_u}{2} \sum_i \|\mathbf{u}_i\|_2^2 - \frac{\lambda_v}{2} \sum_j \|\mathbf{v}_j \mathbf{P}_1 - \mathbf{X}_{0,j*} \mathbf{W}_1\|_2^2 \\ \text{Marginalized CDL:} \quad -\sum_j \|\widetilde{\mathbf{X}}_{0,j*} \mathbf{W}_1 - \overline{\mathbf{X}}_{c,j*}\|_2^2 - \sum_{i,j} \frac{\mathbf{C}_{ij}}{2} (\mathbf{R}_{ij} - \mathbf{u}_i^T \mathbf{v}_j)^2 \end{aligned}$$

Reconstruction error

[Li et al., CIKM 2015]

Collaborative Deep Ranking

Fig. 1. The graphic model of CDR. SDAE with L = 4 is presented inside the dashed rectangle. Note that W^+ denotes the set of weight matrices and bias vectors of all layers.

[Ying et al., PAKDD 2016]

Generative Process: Collaborative Deep Ranking

- 1. For each layer l of the SDAE network,
 - (a) For each column q, draw the weight matrix and bias vector W_l^+ , draw $W_{l,*q}^+ \sim \mathcal{N}(0, \lambda_w^{-1} I_{K_l}).$
 - (b) For each row j of X_l , draw $X_{l,j*} \sim \mathcal{N}(\sigma(X_{l-1,j*}W_l + b_l), \lambda_s^{-1}I_{K_l})$
- 2. For each item j,
 - (a) Draw a clean input $X_{c,j*} \sim \mathcal{N}(X_{L,j*}, \lambda_n^{-1} I_m)$
 - (b) Draw a latent item offset vector $\epsilon_j \sim \mathcal{N}(0, \lambda_v^{-1}I_K)$ and then set the latent item vector to be:

$$v_j = \epsilon_j + X_{\frac{L}{2},j}^T,$$

- 3. For each user i,
 - (a) Draw user factor vector $u_i \sim \mathcal{N}(0, \lambda_u^{-1} I_K)$
 - (b) For each pair-wise preference $(j,k) \in \mathcal{P}_i$, where $\mathcal{P}_i = \{(j,k) : r_{ij} r_{ik} > 0\}$, draw the estimator,

$$\delta_{ijk} \sim \mathcal{N}(u_i^T v_j - u_i^T v_k, c_{ijk}^{-1})$$

CDLVariants

CDL Variants	Venue	Year
Deep CF	CIKM	2015
CD Ranking	PAKDD	2016
CF Networks	DLRS	2016
Collaborative KB Embedding	KDD	2016
AskGRU	RecSys	2016
ConvMF	RecSys	2016
Collaborative DAE	WSDM	2016
Collaborative Recurrent AE	NIPS	2016
DeepCoNN	WSDM	2017
Collaborative Metric Learning	WWW	2017
Additional SDAE	AAAI	2017

More details in http://wanghao.in/CDL.htm

Beyond Bag-of-Words: Documents as Sequences

"Collaborative recurrent autoencoder: recommend while learning to fill in the blanks" [Wang et al., NIPS 2016a]

Motivation:

- A more natural way, take in one word at a time, model documents as sequences
- Jointly model preferences and sequence generation under the BDL framework

Beyond Bag-of-Words: Documents as Sequences

"Collaborative recurrent autoencoder: recommend while learning to fill in the blanks" [Wang et al., NIPS 2016a]

Main Idea:

- Joint learning in the BDL framework
- Wildcard denoising for robust representation

Wildcard Denoising

Sentence: This is a great idea. -> This is a great idea.

Documents as Sequences

"Collaborative recurrent autoencoder: recommend while learning to fill in the blanks" [Wang et al., NIPS 2016a]

Main Idea:

- Joint learning in the BDL framework
- Wildcard denoising for robust representation
- Beta-Pooling for variable-length sequences

Is Variable-Length Weight Vector Possible?

[Wang et al., NIPS 2016a]

Variable-Length Weight Vector with Beta Distributions

Variable-Length Weight Vector with Beta Distributions

[Wang et al., NIPS 2016a]

Graphical Model: Collaborative Recurrent Autoencoder

- Joint learning in the BDL framework
- Wildcard denoising for robust representation
- Beta-Pooling for variable-length sequences

[Wang et al., NIPS 2016a]

[Wang et al. AAAI 2015] [Wang et al. AAAI 2017]

50

Probabilistic SDAE

Graphical model:

Generative process:

Relational SDAE: Graphical Model

Relational SDAE: Two Components

Relational SDAE: Generative Process

Oraw the relational latent matrix S from a matrix variate normal distribution:

$$\mathbf{S} \sim \mathcal{N}_{K,J}(0, \mathbf{I}_K \otimes (\lambda_l \mathscr{L}_a)^{-1}).$$

- **2** For layer l of the SDAE where $l = 1, 2, \ldots, \frac{L}{2} 1$,
 - For each column n of the weight matrix \mathbf{W}_l , draw $\mathbf{W}_{l,*n} \sim \mathcal{N}(0, \lambda_w^{-1} \mathbf{I}_{K_l})$.
 - **2** Draw the bias vector $\mathbf{b}_l \sim \mathcal{N}(0, \lambda_w^{-1}\mathbf{I}_{K_l})$.
 - **③** For each row j of \mathbf{X}_l , draw

$$\mathbf{X}_{l,j*} \sim \mathcal{N}(\sigma(\mathbf{X}_{l-1,j*}\mathbf{W}_l + \mathbf{b}_l), \lambda_s^{-1}\mathbf{I}_{K_l}).$$

Sor layer ^L/₂ of the SDAE network, draw the representation vector for item j from the product of two Gaussians (PoG):

$$\mathbf{X}_{\frac{L}{2},j*} \sim \mathsf{PoG}(\sigma(\mathbf{X}_{\frac{L}{2}-1,j*}\mathbf{W}_l + \mathbf{b}_l), \mathbf{s}_j^T, \lambda_s^{-1}\mathbf{I}_K, \lambda_r^{-1}\mathbf{I}_K).$$

Relational SDAE: Generative Process

- For layer l of the SDAE network where $l = \frac{L}{2} + 1, \frac{L}{2} + 2, \dots, L$,
 - For each column n of the weight matrix \mathbf{W}_l , draw $\mathbf{W}_{l,*n} \sim \mathcal{N}(0, \lambda_w^{-1} \mathbf{I}_{K_l})$.
 - Draw the bias vector $\mathbf{b}_l \sim \mathcal{N}(0, \lambda_w^{-1} \mathbf{I}_{K_l})$.
 - **3** For each row j of \mathbf{X}_l , draw

$$\mathbf{X}_{l,j*} \sim \mathcal{N}(\sigma(\mathbf{X}_{l-1,j*}\mathbf{W}_l + \mathbf{b}_l), \lambda_s^{-1}\mathbf{I}_{K_l}).$$

2 For each item j, draw a clean input

$$\mathbf{X}_{c,j*} \sim \mathcal{N}(\mathbf{X}_{L,j*}, \lambda_n^{-1} \mathbf{I}_B).$$

Multi-Relational SDAE: Graphical Model

Product of Q+1 Gaussians

Multiple networks:

citation networks co-author networks

Relational SDAE: Objective Function

$$\mathscr{L} = -\frac{\lambda_l}{2} \operatorname{tr}(\mathbf{S}\mathscr{L}_a \mathbf{S}^T) - \frac{\lambda_r}{2} \sum_j \|(\mathbf{s}_j^T - \mathbf{X}_{\frac{L}{2}, j*})\|_2^2 - \frac{\lambda_w}{2} \sum_l (\|\mathbf{W}_l\|_F^2 + \|\mathbf{b}_l\|_2^2) - \frac{\lambda_w}{2} \sum_l \|\mathbf{X}_{L, j*} - \mathbf{X}_{c, j*}\|_2^2 - \frac{\lambda_s}{2} \sum_l \sum_j \|\sigma(\mathbf{X}_{l-1, j*} \mathbf{W}_l + \mathbf{b}_l) - \mathbf{X}_{l, j*}\|_2^2$$

Similar to the generalized SDAE, taking λ_s to infinity, the joint log-likelihood becomes:

$$\mathcal{L} = -\frac{\lambda_l}{2} \operatorname{tr}(\mathbf{S}\mathcal{L}_a \mathbf{S}^T) - \frac{\lambda_r}{2} \sum_j \|(\mathbf{s}_j^T - \mathbf{X}_{\frac{L}{2}, j*})\|_2^2 - \frac{\lambda_w}{2} \sum_l (\|\mathbf{W}_l\|_F^2 + \|\mathbf{b}_l\|_2^2) - \frac{\lambda_n}{2} \sum_j \|\mathbf{X}_{L, j*} - \mathbf{X}_{c, j*}\|_2^2,$$

Network $A \rightarrow$ Relational Matrix S

Relational Matrix $S \rightarrow$ Middle-Layer Representations

Update Rules

For S:

$$\mathbf{S}_{k*}(t+1) \leftarrow \mathbf{S}_{k*}(t) + \delta(t)r(t)$$
$$r(t) \leftarrow \lambda_r \mathbf{X}_{\frac{L}{2},*k}^T - (\lambda_l \mathscr{L}_a + \lambda_r \mathbf{I}_J)\mathbf{S}_{k*}(t)$$
$$\delta(t) \leftarrow \frac{r(t)^T r(t)}{r(t)^T (\lambda_l \mathscr{L}_a + \lambda_r \mathbf{I}_J)r(t)}.$$

For X, W, and b: Use Back Propagation.

From Representation to Tag Recommendation

Objective function:

$$\mathscr{L} = -\frac{\lambda_u}{2} \sum_i \|\mathbf{u}_i\|_2^2 - \frac{\lambda_v}{2} \sum_j \|\mathbf{v}_j - \mathbf{X}_{\frac{L}{2},j*}^T\|_2^2$$
$$-\sum_{i,j} \frac{c_{ij}}{2} (\mathbf{R}_{ij} - \mathbf{u}_i^T \mathbf{v}_j)^2,$$

where λ_u and λ_v are hyperparameters. c_{ij} is set to 1 for the existing ratings and 0.01 for the missing entries.

Algorithm

1. Learning representation:

repeat Update S using the updating rules Update X, W, and b until convergence Get resulting representation $X_{\frac{L}{2},j*}$

2. Learning u_i and v_j :

Optimize the objective function \mathscr{L}

3. Recommend tags to items according to the predicted \mathbf{R}_{ij} : $\mathbf{R}_{ij} = \mathbf{u}_i^T \mathbf{v}_j$ Rank $\mathbf{R}_{1j}, \mathbf{R}_{2j}, \dots, \mathbf{R}_{Ij}$ Recommend tags with largest \mathbf{R}_{ij} to item j

Datasets

Description of datasets

	citeulike-a	citeulike-t	movielens-plot
#items	16980	25975	7261
#tags	7386	8311	2988
#tag-item paris	204987	134860	51301
#relations	44709	32665	543621

Sparse Setting, citeulike-a

Case Study 1: Tagging Scientific Articles

An example article with recommended tags

European la Auticle	Title: Mining the Peanut Gallery: Opinion Extraction and Semantic Classification of Product Reviews			
Example Article	Top topic 1: language, text, mining, representation, semantic, concepts, words, relations, processing, categories			
	SDAE	True?	RSDAE	True?
	1. instance	no	 sentiment_analysis 	no
	2. consumer	yes	2. instance	no
	sentiment_analysis	no	3. consumer	yes
	4. summary	no	4. summary	no
Top 10 tags	5. 31july09	no	5. sentiment	yes
	6. medline	no	6. product_review_mining	yes
	7. eit2	no	7. sentiment_classification	yes
	8. l2r	no	8. 31july09	no
	9. exploration	no	9. opinion_mining	yes
	10. biomedical	no	10. product	yes

Precision: 10% VS 60%

Case Study 2: Tagging Movies (SDAE)

An example movie with recommended tags

	Title: E.T. the Extra-Terrestrial		
Example Movie	pple Movie Top topic 1: crew, must, on, earth, human, save, ship, res		
	by, find, scientist, planet		
	SDAE	True tag?	
Top 10 recommended tags	1. Saturn Award (Best Special Effects)	yes	
	2. Want	no	
	3. Saturn Award (Best Fantasy Film)	no	
	4. Saturn Award (Best Writing)	yes	
	5. Cool but freaky	no	
	6. Saturn Award (Best Director)	no	
	7. Oscar (Best Editing)	no	
	8. almost favorite	no	
	9. Steven Spielberg	yes	
	10. sequel better than original	no	

Precision: 30% VS 60%

Case Study 2: Tagging Movies (RSDAE)

An example movie with recommended tags

	Title: E.T. the Extra-Terrestrial		
Example Movie	Top topic 1: crew, must, on, earth, human, save, ship, rescue,		
	by, find, scientist, planet		
Top 10 recommended tags	RSDAE	True tag?	
	1. Steven Spielberg	yes	
	2. Saturn Award (Best Special Effects)	yes	
	3. Saturn Award (Best Writing)	yes	
	4. Oscar (Best Editing)	no	
	5. Want	no	
	6. Liam Neeson	no	
	7. AFI 100 (Cheers)	yes	
	8. Oscar (Best Sound)	yes	
	9. Saturn Award (Best Director)	no	
	10. Oscar (Best Music - Original Score)	yes	

Does not appear in the tag lists of movies linked to 'E.T. the Extra-Terrestrial'

Very difficult to discover this tag

Relational SDAE as Deep Relational Topic Models

BDL-Based Topic Models

Unified into a probabilistic relational model

for relational deep learning

[Wang et al. 2015 (AAAI)]

(Recap) Relational SDAE: Two Components

Using Relational Information as Observations

68

[Wang et al. 2017 (AAAI)]

Be 'Bayesian' in Collaborative Deep Learning

69

Be Bayesian in BDL

"Natural-Parameter Networks: A Class of Probabilistic Neural Networks"

Motivation:

- Uncertainty estimation for reinforcement learning, active learning, etc.
- Robust for insufficient data and noise
- More accurate prediction

Be Bayesian in BDL

"Natural-Parameter Networks: A Class of Probabilistic Neural Networks"

What We Want:

- Solvable via back propagation
- Sampling-free during both training and testing
- Intuitive and easy to implement

Weights/Neurons as Distributions

neural networks

weights/neurons as points

natural-parameter networks

weights/neurons as distributions
Take-home Messages

- Probabilistic graphical models for formulating both representation learning and inference/reasoning components
- Learnable representation serving as a bridge
- Tight, two-way interaction is crucial

Thanks! Q&A