Relational Deep Learning: A Deep Latent Variable Model for Link Prediction

Hao Wang, Xingjian Shi, Dit-Yan Yeung

Motivation

- Bayesian Deep Learning
- •Relational Deep Learning
- Parameter Learning
- •Experiments
- Conclusion

Motivation: Link Prediction

Social Network Analysis (e.g., prediction friendship in Facebook)

Motivation: Link Prediction

Document Networks (e.g., citation networks, co-author networks)

Motivation: Deep Latent Variable Models

Motivation: Deep Latent Variable Models

Typically for i.i.d. data

Motivation

- Bayesian Deep Learning
- •Relational Deep Learning
- Parameter Learning
- •Experiments
- Conclusion

Bayesian Deep Learning

Perception component

Content understanding Posts by users Text in articles

Task-Specific component

Target task Link prediction

Bayesian deep learning (BDL)

- •Maximum a posteriori (MAP)
- •Markov chain Monte Carlo (MCMC)
- •Variational inference (VI)

[Wang et al. 2016]

Bayesian Deep Learning

Applications	Models	Hinge Variables	Learning
	CDL [Wang et al.]	$\{\mathbf{V}\}$	MAP
Recommender	Bayesian CDL [Wang et al.]	$\{\mathbf{V}\}$	Gibbs Sampling
Systems	Marginalized CDL [Li et al.]	$\{\mathbf{V}\}$	MAP
Systems	Symmetric CDL [Li et al.]	$\{\mathbf{V},\mathbf{U}\}$	MAP
	Collaborative Deep Ranking [Ying et al.]	$\{\mathbf{V}\}$	MAP
Topic	Relational SDAE [Wang et al.]	$\{\mathbf{S}\}$	MAP
Models	DPFA-SBN [Gan et al.]	$\{\mathbf{X}\}$	Hybrid MC
widdels	DPFA-RBM [Gan et al.]	$\{\mathbf{X}\}$	Hybrid MC
Control	Embed to Control [Watter et al.]	$\{\mathbf{z}_t, \mathbf{z}_{t+1}\}$	Variational Inference

A Principled Probabilistic Framework

[Wang et al. 2016]

- Motivation
- Bayesian Deep Learning
- Relational Deep Learning
- Parameter Learning
- Experiments
- Conclusion

Relational Deep Learning: Graphical Model

Perception component: relational and deep representation learning Task-specific component: link prediction

Stacked Denoising Autoencoders (SDAE)

Corrupted input

Clean input

SDAE solves the following optimization problem:

$$\min_{\{\mathbf{W}_l\},\{\mathbf{b}_l\}} \|\mathbf{X}_c - \mathbf{X}_L\|_F^2 + \lambda \sum_l \|\mathbf{W}_l\|_F^2,$$

where λ is a regularization parameter and $\|\cdot\|_F$ denotes the Frobenius norm.

[Vincent et al. 2010]

Probabilistic SDAE

Graphical model:

Generative process:

[Wang et al. 2015]

Relational Deep Learning

Network of Probabilistic SDAE

Many interconnected probabilistic SDAEs with shared weights

- Motivation
- Bayesian Deep Learning
- Relational Deep Learning
- Parameter Learning
- •Experiments
- Conclusion

maximizing the posterior probability is equivalent to maximizing the joint log-likelihood

$$\begin{aligned} \mathscr{L} &= -\frac{\lambda_w}{2} \sum_l (\|\mathbf{W}_l\|_F^2 + \|\mathbf{b}_l\|_2^2) \\ &- \frac{\lambda_p}{2} \sum_i \|\boldsymbol{\phi}_i - \mathbf{X}_{\frac{L}{2},i*}^T\|_2^2 - \frac{\lambda_n}{2} \sum_i \|\mathbf{X}_{L,i*} - \mathbf{X}_{c,i*}\|_2^2 \\ &- \frac{\lambda_s}{2} \sum_l \sum_i \|\sigma(\mathbf{X}_{l-1,i*}\mathbf{W}_l + \mathbf{b}_l) - \mathbf{X}_{l,i*}\|_2^2 \\ &- \frac{\lambda_e}{2} \|\boldsymbol{\eta}\|_2^2 + \sum_{l_{i,i'}=1} \log \sigma(\boldsymbol{\eta}^T(\boldsymbol{\phi}_i \circ \boldsymbol{\phi}_{i'})). \end{aligned}$$

Prior (regularization) for link prediction parameters, weights, and biases

$$\mathscr{L} = -\frac{\lambda_w}{2} \sum_l (\|\mathbf{W}_l\|_F^2 + \|\mathbf{b}_l\|_2^2)$$
$$-\frac{\lambda_p}{2} \sum_i \|\boldsymbol{\phi}_i - \mathbf{X}_{\frac{L}{2},i*}^T\|_2^2 - \frac{\lambda_n}{2} \sum_i \|\mathbf{X}_{L,i*} - \mathbf{X}_{c,i*}\|_2^2$$
$$-\frac{\lambda_s}{2} \sum_l \sum_i \|\sigma(\mathbf{X}_{l-1,i*}\mathbf{W}_l + \mathbf{b}_l) - \mathbf{X}_{l,i*}\|_2^2$$
$$-\frac{\lambda_e}{2} \|\boldsymbol{\eta}\|_2^2 + \sum_{l_{i,i'}=1} \log \sigma(\boldsymbol{\eta}^T(\boldsymbol{\phi}_i \circ \boldsymbol{\phi}_{i'})).$$

Generating node features from content representation with Gaussian offset

$$\mathcal{L} = -\frac{\lambda_w}{2} \sum_l (\|\mathbf{W}_l\|_F^2 + \|\mathbf{b}_l\|_2^2)$$
$$-\frac{\lambda_p}{2} \sum_i \|\boldsymbol{\phi}_i - \mathbf{X}_{\frac{L}{2},i*}^T\|_2^2 - \frac{\lambda_n}{2} \sum_i \|\mathbf{X}_{L,i*} - \mathbf{X}_{c,i*}\|_2^2$$
$$-\frac{\lambda_s}{2} \sum_l \sum_i \|\sigma(\mathbf{X}_{l-1,i*}\mathbf{W}_l + \mathbf{b}_l) - \mathbf{X}_{l,i*}\|_2^2$$
$$-\frac{\lambda_e}{2} \|\boldsymbol{\eta}\|_2^2 + \sum_{l_{i,i'}=1} \log \sigma(\boldsymbol{\eta}^T(\boldsymbol{\phi}_i \circ \boldsymbol{\phi}_{i'})).$$

'Generating' clean input from the output of probabilistic SDAE with Gaussian offset

$$\begin{aligned} \mathscr{L} &= -\frac{\lambda_w}{2} \sum_l (\|\mathbf{W}_l\|_F^2 + \|\mathbf{b}_l\|_2^2) \\ &- \frac{\lambda_p}{2} \sum_i \|\boldsymbol{\phi}_i - \mathbf{X}_{\frac{L}{2},i*}^T\|_2^2 - \frac{\lambda_n}{2} \sum_i \|\mathbf{X}_{L,i*} - \mathbf{X}_{c,i*}\|_2^2 \\ &- \frac{\lambda_s}{2} \sum_l \sum_i \|\sigma(\mathbf{X}_{l-1,i*}\mathbf{W}_l + \mathbf{b}_l) - \mathbf{X}_{l,i*}\|_2^2 \\ &- \frac{\lambda_e}{2} \|\boldsymbol{\eta}\|_2^2 + \sum_{l_{i,i'}=1} \log \sigma(\boldsymbol{\eta}^T(\boldsymbol{\phi}_i \circ \boldsymbol{\phi}_{i'})). \end{aligned}$$

Generating the input of Layer I from the output of Layer I-1 with Gaussian offset

$$\begin{aligned} \mathscr{L} &= -\frac{\lambda_w}{2} \sum_l (\|\mathbf{W}_l\|_F^2 + \|\mathbf{b}_l\|_2^2) \\ &- \frac{\lambda_p}{2} \sum_i \|\boldsymbol{\phi}_i - \mathbf{X}_{\frac{L}{2},i*}^T\|_2^2 - \frac{\lambda_n}{2} \sum_i \|\mathbf{X}_{L,i*} - \mathbf{X}_{c,i*}\|_2^2 \\ &- \frac{\lambda_s}{2} \sum_l \sum_i \|\sigma(\mathbf{X}_{l-1,i*}\mathbf{W}_l + \mathbf{b}_l) - \mathbf{X}_{l,i*}\|_2^2 \\ &- \frac{\lambda_e}{2} \|\boldsymbol{\eta}\|_2^2 + \sum_{l_{i,i'}=1} \log \sigma(\boldsymbol{\eta}^T(\boldsymbol{\phi}_i \circ \boldsymbol{\phi}_{i'})). \end{aligned}$$

Generating links from Bernoulli distributions parameterized by η and φ

$$\begin{aligned} \mathscr{L} &= -\frac{\lambda_w}{2} \sum_l (\|\mathbf{W}_l\|_F^2 + \|\mathbf{b}_l\|_2^2) \\ &- \frac{\lambda_p}{2} \sum_i \|\boldsymbol{\phi}_i - \mathbf{X}_{\frac{L}{2},i*}^T\|_2^2 - \frac{\lambda_n}{2} \sum_i \|\mathbf{X}_{L,i*} - \mathbf{X}_{c,i*}\|_2^2 \\ &- \frac{\lambda_s}{2} \sum_l \sum_i \|\sigma(\mathbf{X}_{l-1,i*}\mathbf{W}_l + \mathbf{b}_l) - \mathbf{X}_{l,i*}\|_2^2 \\ &- \frac{\lambda_e}{2} \|\boldsymbol{\eta}\|_2^2 + \sum_{l_{i,i'}=1} \log \sigma(\boldsymbol{\eta}^T(\boldsymbol{\phi}_i \circ \boldsymbol{\phi}_{i'})) \end{aligned}$$

Bayesian Treatment: Generalized Variational Inference

 $\log q_j^*(\mathbf{Z}_j) = \mathcal{E}_{i \neq j}[\log p(\mathbf{X}_0, \mathbf{X}_c, \mathbf{Z})] + const$

- $q_1(\mathbf{Z}_1) = q(\mathbf{W}^+)$: Variational distributions for weights/biases.
- $q_2(\mathbf{Z}_2) = q(\boldsymbol{\phi}_i)$: Variational distributions for generated node features.
- $q_3(\mathbf{Z}_3) = q(\mathbf{\eta})$: Variational distributions for parameters of the link prediction model.
- $q_4(\mathbf{Z}_4) = q(\xi)$: Variational parameters to approximate the sigmoid function.

Use Laplace approximation rather than variational inference for weights/biases.

Example: Updating ϕ as a Product of Gaussians

Update φ for node i as a product of two Gaussians

$$q(\boldsymbol{\phi}_i | \mathbf{X}_{0,i*}) \approx \mathcal{N}(\boldsymbol{\phi}_i | \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$$
$$\boldsymbol{\mu}_i = \boldsymbol{\Sigma}_i (\mathbf{S}_i^{-1} \mathbf{m}_i + {\mathbf{S}'_i}^{-1} \mathbf{m}'_i)$$
$$\boldsymbol{\Sigma}_i^{-1} = \mathbf{S}_i^{-1} + {\mathbf{S}'_i}^{-1}.$$

- Motivation
- Bayesian Deep Learning
- Relational Deep Learning
- Parameter Learning
- •Experiments
- Conclusion

Experiments: Settings

Document Networks (e.g., citation networks)

datasets	# nodes	# links		
citeulike-a	16,980	44,709		
citeulike-t	25,975	32,565		
arXiv	27,770	352,807		

Experiments: Link Rank and AUC

Figure 2: Link rank and AUC of compared models for *citeulike-a*. A 2-layer RDL is used.

Link rank: how high our predicted links rank in the ground truth AUC: area under curve

Experiments: Link Rank and AUC

Figure 3: Link rank and AUC of compared models for *citeulike-t*. A 2-layer RDL is used.

Link rank: how high our predicted links rank in the ground truth AUC: area under curve

Experiments: Link Rank and AUC

Figure 4: Link rank and AUC of compared models for *arXiv*. A 2-layer RDL is used.

Link rank: how high our predicted links rank in the ground truth AUC: area under curve

Experiments: RDL Variants

Link rank of baselines (the first 3 columns) and RDL variants (the last 4 columns) on three datasets (L = 4)

Method	VAE+BLR	VFAE+BLR	SDAE+BLR	MAPRDL	BSDAE1+BLR	BSDAE2+BLR	BayesRDL
citeulike-a	980.81	960.15	992.48	495.97	849.02	761.57	473.59
citeulike-t	1599.62	1531.16	1356.85	951.31	1341.15	1310.12	911.31
arXiv	3367.25	3316.29	2916.18	2028.72	2947.79	2708.17	1982.84

VAE: Variational Autoencoder

VRAE: Variational Fair Autoencoder

BLR: Bayesian Logistic Regression

BSDAE1: Bayesian treatment of probabilistic SDAE (mean only)

BSDAE2: Bayesian treatment of probabilistic SDAE (mean and variance)

MAPRDL: RDL with MAP inference

BayesRDL: RDL with full Bayesian treatment

Experiments: Depth

	Link Rank		AUC			
	RDL-1	RDL-2	RDL-3	RDL-1	RDL-2	RDL-3
citeulike-a	825.74	495.97	488.41	0.939	0.964	0.963
citeulike-t	2060.17	951.31	912.43	0.894	0.954	0.955
arXiv	5241.97	2080.72	2730.08	0.755	0.905	0.855

Performance of RDL with different number of layers (MAP)

Performance of RDL with different number of layers (Bayesian treatment)

	Link Rank			AUC		
	RDL-1	RDL-2	RDL-3	RDL-1	RDL-2	RDL-3
citeulike-a	789.85	473.59	471.47	0.946	0.971	0.970
citeulike-t	1904.83	911.31	867.78	0.906	0.956	0.960
arXiv	4965.01	1982.84	2612.12	0.801	0.914	0.866

Case Study: RDL and RTM

t-SNE visualization of latent factors learned by RDL (left) and RTM (right).

Target article:

From DNA sequence to transcriptional behaviour: a quantitative approach

* (red): articles with links to the target article
O (blue): articles without links to the target article

Case Study: RDL

t-SNE visualization of latent factors learned by RDL.

Target article:

From DNA sequence to transcriptional behaviour: a quantitative approach

Case Study: RDL ang gRTM

Top 10 link predictions made by gRTM and RDL for two articles from citeulike-a

	Query: Object class recognition by unsupervised scale-invariant learning
	Layered depth images
	Using spin images for efficient object recognition in cluttered 3D scenes
	Snakes: active contour models
	Visual learning and recognition of 3-D objects from appearance
m	Contextual priming for object detection
R	Visual categorization with bags of keypoints
gRTM	Non-parametric model for background subtraction
-	Alignment by maximization of mutual information
	Rapid object detection using a boosted cascade of simple features
	W4: real-time surveillance of people and their activities
	Distinctive image features from scale-invariant keypoints
	visual learning and recognition of 3-D objects from appearance
	Object recognition with features inspired by visual cortex
	Unsupervised learning of models for recognition
	Robust object recognition with cortex-like mechanisms
RDL	Generative versus discriminative methods for object recognition
ΗĔ	Using spin images for efficient object recognition in cluttered 3D scenes
	Learning generative visual models from few training examples
	3D object modeling and recognition using affine-invariant patches
	A Bayesian approach to unsupervised one-shot learning of object categories

Case Study: RDL ang gRTM

Top 10 link predictions made by gRTM and RDL for two articles from citeulike-a

	Query: SCOP database in 2004: refinements integrate structure and sequence family data
	Pfam: multiple sequence alignments and HMM-profiles of protein domains
	Structure, function and evolution of multidomain proteins
	Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB
	Nature of the protein universe
000	The CATH domain structure database and related resources
, R	Phylogenetic classification of short environmental DNA fragments
gRTM	The catalytic site atlas: a resource of catalytic sites and residues identified in enzymes
5	LGA: a method for finding 3D similarities in protein structures
	Amino acid substitution matrices from protein blocks
	Multiple protein sequence alignment
	The universal protein resource (UniProt)
	E-MSD: an integrated data resource for bioinformatics
	Gene3D: comprehensive structural and functional annotation of genomes
	The universal protein resource (UniProt) in 2010
	Gene3D: modelling protein structure, function and evolution
RDL	The universal protein resource (UniProt): an expanding universe of protein information
Ĕ	Pfam: clans, web tools and services
	The Pfam protein families database
	The protein data bank
	SCOP: a structural classification of proteins database

- Motivation
- Bayesian Deep Learning
- •Relational Deep Learning
- Parameter Learning
- •Experiments
- Conclusion

Conclusion

- •First Bayesian DL model for link prediction
- •Joint Bayesian DL is beneficial
- •Significant improvement on the state of the art
- •RDL as representation learning

Future Work

Multi-relational data (co-author & citation networks)

- •Boost predictive performance
- •Discover relationship between different networks

•GVI for other neural nets (CNN/RNN) and BayesNets

- •pSDAE + link prediction
- pCNN + recommendation
- •pRNN + community detection

•Replace probabilistic SDAE with other Bayesian neural nets

- •Variational autoencoders
- •Natural-parameter networks

www.wanghao.in hwangaz@connect.ust.hk