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Deep Networks are Vulnerable under Adversarial Attacks
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L = ℒ(Y, ̂Y )

̂Y = F(x)

δ = argmaxδ≤ϵℒ(Y, F(X + δ))
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Existing defense focus on the training algorithm
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[1] Madry et al.  Towards deep learning models resistant to adversarial attacks

[2] Mao et al. Metric Learning for Adversarial Robustness.

[3] Mao et al. Multitask learning strengthens adversarial robustness.

Multiple Tasks [3] 

Training

Adversarial Training [1]
δ = argmaxδ≤ϵℒ(Y, Fθ(X + δ))

θ = argminθ(ℒ(Y, Fθ(X + δ)))

Regularization [2] 



Additional tasks during training secure the model



Training time defense is not enough
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Natural Images contain intrinsic structure
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Natural Images contain intrinsic structure



Adversarial Attack also damages the incidental structure of image
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If the image is natural, the backward path should not 
have gradient,


The Prior == The Posterior

If the image is attacked, the backward path can fix the 

wrong prior
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Contrastive Loss for Self-supervision
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Our Method
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Adaptive attack: Lose-lose situation for attacker

If the attack ignores 
our defense, our 
defense improves 
accuracy

If the attacker adapts 
to our defense, it will 
hurt their attack and 
increase our robust 
accuracy.


This makes sense 
which means the 
attacker help us find a 
attack that also 
produces a good prior The strength of the adaptive attack



Theoretical Guarantee
Our approach can improve the classification accuracy upper bound.
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Theoretical Guarantee

We here use Fano’s Inequality to connect entropy to our prediction accuracy
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Classification Task

Our defense still work when adaptive attack know our defense
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The state-of-the-art Defense

CIFAR10 CIFAR100 SVHN ImageNet

STOA Defense 60.2% 27.6% 53.6% 27.81%

Adding Ours 7.5% 5.5% 11.8% 3.1%



Experiment Result

Our defense generalize to 
larger adversarial attack 

budget

Our approach has better 
trade-off between 

robustness and clean 
accuracy



Steps for Reversal



Visualization for feature space before and after reversal
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Conclusion and future work

1.We propose an inference-time defense for adversarial attacks by restoring the 
intrinsic structure of the input.


2.Our method achieves the state-of-the-art defense on the auto-attack leaderboard

3.Our test time defense method is generic, which is compatible with existing 

training-time defense method, and can be used in other modalities such as sound, 
language, and beyond.

Code: https://github.com/cvlab-columbia/SelfSupDefense

Paper: https://arxiv.org/pdf/2103.14222.pdf

https://github.com/cvlab-columbia/SelfSupDefense
https://arxiv.org/pdf/2103.14222.pdf

