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Deep Networks are Vulnerable under Adversarial Attacks
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Existing defense focus on the training algorithm
Output Task — Multiple Tasks [3]

o — Regularization [2]

N
> Lrip(x,xP,xP) = 3 [D((xP), h(x{))) — D(A(x), h(x()) + o] +

0 = argmax Seg(Y, Fyo(X +0))

Input Data h Adversarial Training [1]

0 = argmin (Z(Y, Fy(X + 6)))

[1] Madry et al. Towards deep learning models resistant to adversarial attacks
[2] Mao et al. Metric Learning for Adversarial Robustness.
[3] Mao et al. Multitask learning strengthens adversarial robustness.




Additional tasks during training secure the

Training Task 1 + Testing Task

SemSeqg *
DepthZ (1072)
Edge2D (1072)

Normal (1072)

Reshading (1072)

Key2D (10-2)
Key3D (1072)
DepthE (1073)
AutoE (1072)
Edge3D (107?)

PCurve (107%)

None

(Baseline)

13.36

Training Task 2

model

11.49

10.67

40.93

57.89

11.72

49.70

4.85

59.31

15.90

11.47

SemSeg DepthZ Edge2D Normal Reshading Key2D Key3D DepthE AutoE Edge3D PCurve Mean
0.00 44.61 4.42 24.48 9.13 17.51 3.14 11.60 5.61 10.18 11.53 14.22
40.99 -8.02 3.22 27.27 -6.43 23.64

8.81 9.54 5.41 8.35

3.58 2.43 -0.70 3.89

3.36 7.93 14.80 0.46 4.08

0.00 6.56 9.88 8.08

7.73 15.14 11.81 0.00 -3.04 -6.39 8.80

27.15 mm 11.87 -17.11 24.24 23.07 0.00 39.44 22.63
2.60 -1.62 1.75 -5.08 -0.17 -0.03 -2.37 1.80 m -1.94 -3.68 -0.87
8.36 3.58 -2.71 3.38 4.45 1.96 -6.32 3.12 20.69 0.00 6.98 4.35
22.22 22.38 9.74 19.51 16.14 22.39 9.04 2.81 19.91 9.31 0.00 15.34

(a) Performance Under Attack




Training time defense is not enough
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Natural Images contain intrinsic structure
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Natural Images contain intrinsic structure
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Adversarial Attack also damages the incidental structure of image
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Graphical Model
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Graphical Model
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Graphical Model

Backward to get

Posterior of
Features
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If the image is natural, the backward path should not
have gradient,
The Prior == The Posterior
If the image is attacked, the backward path can fix the
wrong prior
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Algorithm

Category Self-supervision
Task

i
i
' Defended DNN
:
i

i
i
i
Wong et al. 2020 Contrastive Loss
i
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a i (), exp(cos(zi, z;)/T)
L,(x) wi Vi "9 5 “exp(cos(ai, zk)/7)




Contrastive Loss for Self-supervision

Category Self-supervision

I O exp(cos(zi,2;)/T)
Task Li(x)=-E -yz.j log S~ exp(cos(z:, 2x)/7).
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Contrastive Loss for Self-supervision

Category Self-supervision _ costonn)/r)
Task r _ _R. . gf,)l exp(cos\z;,Z;)/T

T 00 = 7B 3357108 5 exp(cos(z, 26) /7).
i
Defended DNN
Wong et al. 2020 1
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Our Method

Cannon

T

Defended DNN Defended DNN
Wong et al. 2020 Wong et al. 2020
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Our Method

Algorithm 1 Self-supervised Reverse Attack Self-supervision

Cannon 1: Input: Potentially attacked image x, step size 77, num- Traffic ng ht Task
ber of iterations K, a classifier F', reverse attack bound
T €y, and self-supervised loss function L.
Output: Class prediction ¢ s
Inference:

x’ « x + n, where n is the initial random noise
fork=1,...,Kdo
x' < X' — NV Ls(x) Defended DNN "
X' < IIx,,)X’, which projects the image back into Wong et al. 2020 ¢ Gradient Back
the bounded region.
end for
9: Predict the final output by § = F'(x’)

Defended DNN
Wong et al. 2020
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Our Method

Cannon Algorithm 1 Self-supervised Reverse Attack Cannon Self-su perV|S|on
1: Input: Potentially attacked image x, step size 77, num- Task
ber of iterations K, a classifier F', reverse attack bound aS
€y, and self-supervised loss function L.
2: Output: Class prediction ¢
3: Inference: l
4: x' + x + n, where n is the initial random noise "
Defended DNN 5: fork=1,..., K do Defended DNN ' Gradient
6: X «x' —nVyxLs(x') d
Wong et al. 2020 7. X' < IIx,)X’, which projects the image back into Wong et al. 2020 “ BackPropagation

the bounded region.
8: end for
9: Predict the final output by § = F(x')

- -

Adversarial Perturbations

Our Reverse Perturbation



Adaptive attack: Lose-lose situation for attacker

If the attack ignores
our defense, our
defense improves
accuracy

If the attacker adapts
to our defense, it will
hurt their attack and
Increase our robust
accuracy.

This makes sense
which means the
attacker help us find a
attack that also
produces a good prior
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The strength of the adaptive attack
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Theoretical Guarantee

Our approach can improve the classification accuracy upper bound.

Lemma 1. The standard classifier under adversarial at- Theorem 1. Assume the base classifier operates bet-
tack is equivalent to predicting with P(Y|X = x,,Y®) = ter than chance and instances in the dataset are uni-
yc(,,s)), and our approach is equivalent to predicting with formly distributed over m categories. Let the predic-
P(Y|X =x,,Y®) =y©), tion accuracy bounds be P(Y|YC(LS),XQ) € |by,c1] and

P(Y|Y®) X,) € [ba,ca]. If the conditional mutual infor-
mation I(Y;Y(3)|Xa) > 0, we have by > by and co > ¢,
which means our approach strictly improves the bound for
classification accuracy.



Theoretical Guarantee

Proof. For the standard classifier under attack, we know

that P(Y® = y{)|X = x,) = 1. Thus we know the

standard classifier under adversarial attack 1s equivalent to
Lemma 1. The standard classifier under adversarial at-
tack is equivalent to predicting with P(Y|X = x,,Y®) =

yc(,,s)), and our approach is equivalent to predicting with

P(Y|X =x,,Y®) =y0), =P(Y[Y® =y® X =x,).

P(Y|X=x,)=» P(YY|X=xq)P(Y|Y® X =2z,)
Y (s)

Our algorithm finds a new input image xg’gx that

argmax P(X(”) — x(™) X = x@)p(y(S) _ y(s)|X(n) _ x(n))

x(n)

— argmax P(X' = x™|X = x,, Y® = y®).

x(n)

(

Our algorithm first estimate xr,}'f’gx with adversarial im-

age x, and self-supervised label y(*). We then predict the

label Y using our new image xﬁg‘gx. Thus, our approach in

fact estimates P(Y|X (™) = nggx)P(X(”) = ng’gx|X =
Xq, Y8 = y(%)), Note the following holds:

P(Y|X = x4, Y® = y®)) 9)

= P(YX™)P(x"™|X =x,, Y =y®) (10)
x(n)

~ P(Y|X(n) = xg’gx)P(X(") = xl(;f’a?x|X = x,, Y = y(s))

(11)

Thus our approach is equivalent to estimating P(Y|X =
XaaY(s) — y(s))°




Theoretical Guarantee

Theorem 1. Assume the base classifier operates bet-
ter than chance and instances in the dataset are uni-
formly distributed over n categories. Let the predic-
tion accuracy bounds be P(Y|YC(,,S),XG) € [by,c1| and
P(Y|Y®),X,) € [ba,ca]. If the conditional mutual infor-
mation 1(Y; Y(3)|Xa) > 0, we have by > by and co > ¢,
which means our approach strictly improves the bound for
classification accuracy.

We here use Fano’s Inequality to connect entropy to our prediction accuracy



Venn diagram for our defense
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Our defense still work when adaptive attack know our defense

Reptout ot \insic Signal from
efense-Aware

Attack  [-oupervision Task



The state-of-the-art Defense

CIFAR10 CIFAR100 SVHN ImageNet

STOA Defense 60.2% 27.6% 53.6% 27.81%

Adding Ours +7.5% +5.5% +11.8% +3.1%




Experiment Result

Our defense generalize to
larger adversarial attack
budget

Our approach has better
trade-off between
robustness and clean
accuracy
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Figure 6: The adversarial robust accuracy vs. perturbation budget curves on CIFAR-10, CIFAR-100, SVHN, and ImageNet, under the

L norm. The red line is applying our inference algorithm to the baseline models [50, 61,

improves the robustness.
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Figure 7: The trade-off between adversarial robust accuracy vs. clean accuracy on CIFAR-10, CIFAR-100, and SVHN under the Lo

norm. We increase the noise budget e, from small to large, which causes the clean accuracy to drop from right to left. Our method produces
a better reversal of the adversarial perturbation than just adding random noise to reverse it.



Steps for Reversal
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Visualization for feature space before and after reversal
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Visualization
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Conclusion and future work

1.We propose an inference-time defense for adversarial attacks by restoring the
intrinsic structure of the input.

2.0ur method achieves the state-of-the-art defense on the auto-attack leaderboard

3.0ur test time defense method is generic, which is compatible with existing

training-time defense method, and can be used in other modalities such as sound,
language, and beyond.

Code: https://qgithub.com/cviab-columbia/SelfSupDefense
Paper: https://arxiv.org/pdf/2103.14222.pdf



https://github.com/cvlab-columbia/SelfSupDefense
https://arxiv.org/pdf/2103.14222.pdf

