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Time is closely related to what you see 
and hear
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Time perception is essential for living 
organisms  
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Hunting Playing Hearing

◦ Mostly, machines fails to perceive time directly from visual or audio inputs
◦ Can gaps between natural and artificial intelligence be bridged further through 

introducing the “time perception” mechanism?



Existing methods for time-series modeling
◦ Recurrent neural networks (RNNs) (assume data to be evenly sampled)
◦ Latent ordinary differential equation (ODE)/ ODE-RNN ( for handling irregularly 

sampled data)
◦ Jump stochastic differential equation (JSDE) ( for modeling marked point process data)
◦ However, above methods require training data with timing annotations:

◦ timing annotations of events contained in regularly-sampled sequence
◦ or timing annotation of each data point for irregularly-sampled data
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Our Goal: develop time-series models that can jointly infer the timings and the 
dynamics of time series data without requiring any timing annotations during training.



Consider an autoregressive task for irregularly sampled 
MNIST rotating digits

6

Boundary value problem (BVP):

Boundary conditions: 

Input:  

Output:



Predicting next frame by solving BVP ODE
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BVP ODE Solution:
Input:  

Output:



However, the timing of each data point is usually 
unknow (or not exact in many realistic tasks)
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BVP ODE Solution:
Input:  

Output:



We propose a stochastic boundary value problem
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Stochastic boundary value problem (SBVP):

Boundary conditions:

Input:  

Output:



Our model: Stochastic Boundary Ordinary Differential 
Equation (STRODE) 
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Technical challenges in learning the STRODE
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Learning the STRODE is, equivalently, solving the SBVP:

◦ The inference of the temporal point process (TPP) in SBVP is difficult as timing 
annotation is unavailable during training

◦ We, therefore, adopt variational inference to optimize the STRODE:
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Learning the STRODE is, equivalently, solving the SBVP:

◦ The inference of the temporal point process (TPP) in SBVP is difficult as timing 
annotation is unavailable during training

◦ We, therefore, adopt variational inference to optimize the STRODE:

Prior of TPP
Approximate 

posterior of TPP



Technical challenges in learning the STRODE
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◦ TPP with general form is usually more powerful than the ones with fixed 
parametric form

◦ But KL-divergence between two TPPs with general forms in the evidence lower 
bound (ELBO) could be computationally intractable

If a general form of TPPs are assumed, it will
be difficult to calculate the KL term



Technical challenges in learning the STRODE
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◦ Traditional sampling methods (e.g., thinning algorithm) of TPP lead to 
convergence issues when optimizing STRODE with variational inference

Traditional sampling methods 
lead to convergence issues 



Our solution: ODE-based Sampling and Inference of TPP

20

◦ We propose an initial value problem (IVP) ODE to describe the dynamics of boundary times

Initial value problem (IVP):

Initial condition: 
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◦ We propose an initial value problem (IVP) ODE to describe the dynamics of boundary times

◦ Differentiable sampling of the approximate posterior of TPP is achieved by solving such IVP

Initial value problem (IVP):

Initial condition: 

General solution:
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◦ We propose an initial value problem (IVP) ODE to describe the dynamics of boundary times

◦ Differentiable sampling of the approximate posterior of TPP is achieved by solving such IVP

Initial value problem (IVP):

Initial condition: 

General solution: Approximate solution:

A neural 
network
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◦ We propose an initial value problem (IVP) ODE to describe the dynamics of boundary times

◦ Differentiable sampling of the approximate posterior of TPP is achieved by solving such IVP

◦ Posterior of the TPP can be written as an differential equation accordingly

Initial value problem (IVP):

Initial condition: 

General solution: Approximate solution:

A neural 
network

Approximate posterior of TPP:



Our solution: ODE-based Sampling and Inference of TPP
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◦ We propose an initial value problem (IVP) ODE to describe the dynamics of boundary times

◦ Differentiable sampling of the approximate posterior of TPP is achieved by solving such IVP

◦ Posterior of the TPP can be written as an differential equation accordingly

Initial value problem (IVP):

Initial condition: 

General solution: Approximate solution:

A neural 
network

Approximate posterior of TPP:

Auto-differentiation



Theoretical results: ODE-based Kullback–Leibler (KL) 
Divergence with analytical upper bound
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◦ Similar to Omi et al.’s work,  our prior of TPP in STRODE is a differential equation

Prior of TPP:

Omi, T., Ueda, N., and Aihara, K. Fully neural network based model for general temporal point processes. Conference on Neural Information 
Processing Systems (NeurIPS), 2019.
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◦ Similar to Omi et al.’s work,  our prior of TPP in STRODE is a differential equation

◦ KL-divergence between two differential equations in the evidence lower bound 
(ELBO) is computationally intractable

Approximate posterior of TPP:Prior of TPP:

KL
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◦ Similar to Omi et al.’s work,  our prior of TPP in STRODE is a differential equation

◦ KL-divergence between two differential equations in the evidence lower bound 
(ELBO) is computationally intractable
◦ upper limit of the integration approaches infinity when calculating the KL

Approximate posterior of TPP:Prior of TPP:

KL



Theoretical results: ODE-based Kullback–Leibler (KL) 
Divergence with analytical upper bound
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We derive an analytical upper bound for the KL term in ELBO (Theorem 1)
◦ We first introduce an ODE to to assist the derivation of the upper bound 

◦ Then we separate the KL term into two parts, where one part is computed by 
solving the IVP, but the other involves an improper integral

◦ Unlike the well-known Gronwall’s Inequality which bound such integral with an 
unbounded Lipschitz constant

◦ We derive an computationally tractable upper bound of such integral (Lemma 1)



STRODE is capable of inferring timings of irregularly 
sampled sine waves
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Training data samples

Cosine similarity (CS) between the inferred timings and 
the ground truth. 

Sine waves are sampled 
with Hawkes process

Sine waves are sampled 
with Poisson process



STRODE can be generalized to irregularly sampled high 
dimensional data (Rotating MNIST Thumbnail)
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Training data samples

Cosine similarity (CS) (mean std) and MSE results on two subsets of Rotating MNIST 
Thumbnail*

*: We find that results differ when using different GPUs. We, therefore, rerun the experiments with a NVIDIA TESLA V100 GPU



An extension of  STRODE for real application: 
postdictive acoustic modeling
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◦ There are advantages to this process for many real-world tasks.
◦ For example, understanding a word aids in distinguishing its constituent 

phonemes from another in human speech processing
◦ However, such process is difficult to be incorporated into acoustic 

modeling
◦ This is because the temporal range of subsequent context is mostly 

unannotated
◦ Such process could lead to input latency due to future context required

Postdiction: a phenomena in cognition of human brain, in which accuracy of 
“prediction” is reassured with sufficient future information to be integrated.



An extension of  STRODE for real application: 
postdictive acoustic modeling
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◦ We adopt STRODE to infer such 
temporal ranges

◦ Our STRODE further produce
future acoustic features as 
additional inputs of the original 
acoustic model



STRODE outperforms ODE-RNN in realistic conversation speech 
data (CHiME-5)
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N: number of hidden states per layer; 
P: number of model parameters;
T: training time per epoch (hrs).

WER (%) on eval of CHiME-5



Biological interpretability of STRODE: it has the potential to 
model Postdictive mechanisms in neuroscience

36

The Softmax outputs by taking the ODE solutions at future time 
points as an extra input of the acoustic model

◦ The dotted line corresponds to the original Softmax output of STRODE-based 
acoustic model

◦ STRODE allows continuous-time evaluation of predictions, whose patterns 
surprisingly match the postdiction!



Take-away

We generalize neural ODE in handling a special type of boundary value 
problem with random boundary times, our STRODE
◦ Infers both the timings and the dynamics of time series without 

requiring any timing annotations during training

◦ Can be applied to address real-world problems, e.g., postdictive 
acoustic modeling

◦ We give a learning framework of STRODE with theoretical guarantees

◦ Code: https://github.com/Waffle-Liu/STRODE
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https://github.com/Waffle-Liu/STRODE
https://github.com/Waffle-Liu/STRODE

