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Background

• Domain Incremental Learning (DIL)

• Machine learning models are required to incrementally learn the evolving data distributions.

• E.g., autonomous driving under different weather conditions.

• Memory constraint: no (or very limited size of) the past data can be stored during training.
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Background

• Domain Incremental Learning (DIL)

• Machine learning models are required to incrementally learn the evolving data distributions.

• E.g., autonomous driving under different weather conditions.

• Memory constraint: no (or very limited size of) the past data can be stored during training.

• Goal of DIL: minimize the model’s risk over all domains.
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ERM-Based Generalization Bound

• Empirical Risk Minimization (ERM) via Experience Replay (ER)

• [Lemma 3.1] Trivially replaying the memory will cause a loose generalization bound.
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Intra-Domain Model-Based Bound

• Dark Experience Replay (DER++)

• [Lemma 3.2] Intra-Domain Model-Based Bound

10/17/23 5

Encoder 𝑒 Predictor 𝑝

History Model 𝐻𝑡−1

Memory: ℳ = {𝑀𝑖}𝑖=1
𝑡−1

Current Domain Data: 𝒮𝑡

𝑡

Domain ID

Current Model ℎ

Classification Loss

𝜖𝒟𝑖
ℎ + 𝜖𝒟𝑡(ℎ)

Distillation Loss

𝜖𝒟𝑖
(ℎ, 𝐻𝑡−1)



Cross-Domain Model-Based Bound

• Learning without Forgetting (LwF)

• [Lemma 3.3] Cross-Domain Model-Based Bound
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UDIL: A Unified Bound for DIL

• A set of coefficients    integrates them into one unified bound.

• [Theorem 3.4] Unified Generalization Bound for all domains
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UDIL: A Unified Bound for DIL

• UDIL unifies multiple existing methods under certain conditions.
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UDIL: An Adaptive Bound for DIL

• UDIL can adaptively adjust the coefficients based on the data and the history model 𝐻𝑡−1.

• It will, ideally, minimize the tightest bound in the family of all the generalization bounds.
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UDIL: An Adaptive Bound for DIL
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UDIL: An Adaptive Bound for DIL
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UDIL: An Adaptive Bound for DIL
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UDIL: An Adaptive Bound for DIL
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UDIL: Experimental Results

• UDIL’s representation distribution on synthetic dataset (high-dimensional balls)
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UDIL: Experimental Results

• UDIL evaluated on realistic datasets.
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UDIL: Experimental Results

• UDIL evaluated on realistic datasets.
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Conclusion

• Proposed a principled framework, UDIL, for domain incremental learning with memory to 
unify various existing methods. 

• Theoretical analysis shows that different existing methods are equivalent to minimizing the 
same error bound with different fixed coefficients. 

• UDIL allows adaptive coefficients during training, thereby always achieving the tightest 
bound and improving the performance. 
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