

1

A Unified Approach to Domain Incremental Learning with Memory: Theory and Algorithm

Haizhou Shi, Hao Wang Computer Science Department, Rutgers University

Background

- Domain Incremental Learning (DIL)
 - Machine learning models are required to incrementally learn the evolving data distributions.
 - E.g., autonomous driving under different weather conditions.

• Memory constraint: no (or very limited size of) the past data can be stored during training.

Background

- Domain Incremental Learning (DIL)
 - Machine learning models are required to incrementally learn the evolving data distributions.
 - E.g., autonomous driving under different weather conditions.

- Memory constraint: no (or very limited size of) the past data can be stored during training.
- Goal of DIL: minimize the model's risk over *all domains*.

$$\mathcal{L}^*(\theta) = \mathcal{L}_t(\theta) + \mathcal{L}_{1:t-1}(\theta) = \mathbb{E}_{(x,y)\sim\mathcal{D}_t}[\ell(y,h_\theta(x))] + \sum_{i=1}^{t-1} \mathbb{E}_{(x,y)\sim\mathcal{D}_i}[\ell(y,h_\theta(x))]$$

ERM-Based Generalization Bound

• Empirical Risk Minimization (ERM) via Experience Replay (ER)

• [Lemma 3.1] Trivially replaying the memory will cause *a loose generalization bound*.

$$\sum_{i=1}^{t} \epsilon_{\mathcal{D}_i}(h) \leq \sum_{i=1}^{t} \widehat{\epsilon}_{\mathcal{D}_i}(h) + \sqrt{\left(\frac{1}{N_t} + \sum_{i=1}^{t-1} \frac{1}{\widetilde{N}_i}\right) \left(8d\log\left(\frac{2eN}{d}\right) + 8\log\left(\frac{2}{\delta}\right)\right)}.$$

• Dark Experience Replay (DER++)

• [Lemma 3.2] Intra-Domain Model-Based Bound

 $\epsilon_{\mathcal{D}_i}(h) \leq \epsilon_{\mathcal{D}_i}(h, H_{t-1}) + \epsilon_{\mathcal{D}_i}(H_{t-1}),$

• Learning without Forgetting (LwF)

• [Lemma 3.3] Cross-Domain Model-Based Bound

$$\epsilon_{\mathcal{D}_i}(h) \leq \epsilon_{\mathcal{D}_t}(h, H_{t-1}) + \frac{1}{2} d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_i, \mathcal{D}_t) + \epsilon_{\mathcal{D}_i}(H_{t-1}),$$

UDIL: A Unified Bound for DIL

• A set of coefficients $\{\alpha_i, \beta_i, \gamma_i\}_{i=1}^{t-1}$ (with $\alpha_i + \beta_i + \gamma_i = 1$) integrates them into one unified bound.

$$\epsilon_{\mathcal{D}_{i}}(h) \xrightarrow{\qquad \gamma_{i} \epsilon_{\mathcal{D}_{i}}(h)} Na\"ve ERM$$

$$\epsilon_{\mathcal{D}_{i}}(h) \xrightarrow{\qquad \gamma_{i} \epsilon_{\mathcal{D}_{i}}(h, H_{t-1}) + \epsilon_{\mathcal{D}_{i}}(H_{t-1})]} Intra-Domain Bound$$

$$\beta_{i}[\epsilon_{\mathcal{D}_{i}}(h, H_{t-1}) + \epsilon_{\mathcal{D}_{t}}(h, H_{t-1}) + \frac{1}{2}d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_{i}, \mathcal{D}_{t})] Cross-Domain Bound$$

• [Theorem 3.4] Unified Generalization Bound for all domains

$$\begin{split} \sum_{i=1}^{t} \epsilon_{\mathcal{D}_{i}}(h) &\leq \left\{ \sum_{i=1}^{t-1} \left[\gamma_{i} \widehat{\epsilon}_{\mathcal{D}_{i}}(h) + \alpha_{i} \widehat{\epsilon}_{\mathcal{D}_{i}}(h, H_{t-1}) \right] \right\} + \left\{ \widehat{\epsilon}_{\mathcal{D}_{t}}(h) + (\sum_{i=1}^{t-1} \beta_{i}) \widehat{\epsilon}_{\mathcal{D}_{t}}(h, H_{t-1}) \right\} \\ &+ \frac{1}{2} \sum_{i=1}^{t-1} \beta_{i} d_{\mathcal{H} \Delta \mathcal{H}}(\mathcal{D}_{i}, \mathcal{D}_{t}) + \sum_{i=1}^{t-1} (\alpha_{i} + \beta_{i}) \epsilon_{\mathcal{D}_{i}}(H_{t-1}) \\ &+ \sqrt{\left(\frac{(1 + \sum_{i=1}^{t-1} \beta_{i})^{2}}{N_{t}} + \sum_{i=1}^{t-1} \frac{(\gamma_{i} + \alpha_{i})^{2}}{\widetilde{N}_{i}} \right) \left(8d \log \left(\frac{2eN}{d} \right) + 8 \log \left(\frac{2}{\delta} \right) \right)} \end{split}$$

• UDIL *unifies* multiple existing methods under certain conditions.

	$\mid lpha_i$	β_i	γ_i	Transformed Objective	Condition
UDIL (Ours)	$ \left[0,1 ight]$	[0,1]] [0,1]	-	-
LwF [52]	0	1	0	$\mathcal{L}_{ ext{LwF}}(h) = \widehat{\ell}_{\mathcal{X}_t}(h) + \lambda_o \widehat{\ell}_{\mathcal{X}_t}(h, H_{t-1})$	$\lambda_o = t - 1$
ER [75]	0	0	1	$\mathcal{L}_{ ext{ER}}(h) = \widehat{\ell}_{B_t}(h) + \sum_{i=1}^{t-1} rac{ B_t' /(t-1)}{ B_t } \widehat{\ell}_{B_i'}(h)$	$ B_t =rac{ B_t' }{(t-1)}$
DER++ [<mark>8</mark>]	1/2	0	1/2	$\mathcal{L}_{\text{DER++}}(h) = \widehat{\ell}_{B_t}(h) + \frac{1}{2} \sum_{i=1}^{t-1} \frac{ B'_t /(t-1)}{ B_t } [\widehat{\ell}_{B'_i}(h) + \widehat{\ell}_{B'_i}(h, H_{t-1})]$	$ B_t =rac{ B_t' }{(t-1)}$
iCaRL [74]	1	0	0	$\mathcal{L}_{ ext{iCaRL}}(h) = \widehat{\ell'}_{B_t}(h) + \sum_{i=1}^{t-1} rac{ B_t' /(t-1)}{ B_t } \widehat{\ell'}_{B_i'}(h, H_{t-1})$	$ B_t =rac{ B_t' }{(t-1)}$
CLS-ER [4]	$\frac{\lambda}{\lambda+1}$	0	$\frac{1}{\lambda+1}$	$\mathcal{L}_{\texttt{CLS-ER}}(h) = \widehat{\ell}_{B_t}(h) + \sum_{i=1}^{t-1} \frac{1}{t-1} \widehat{\ell}_{B_i'}(h) + \sum_{i=1}^{t-1} \frac{\lambda}{t-1} \widehat{\ell}_{B_i'}(h, H_{t-1})$	$\lambda = t - 2$
ESM-ER [80]	$\frac{\lambda}{\lambda+1}$	0	$\frac{1}{\lambda+1}$	$\mathcal{L}_{\text{ESM-ER}}(h) = \widehat{\ell}_{B_t}(h) + \sum_{i=1}^{t-1} \frac{1}{r(t-1)} \widehat{\ell}_{B'_i}(h) + \sum_{i=1}^{t-1} \frac{\lambda}{r(t-1)} \widehat{\ell}_{B'_i}(h, H_{t-1})$	$\begin{cases} \lambda = -1 + r(t-1) \\ r = 1 - e^{-1} \end{cases}$
BiC [<mark>100</mark>]	$\frac{t-1}{2t-1}$	$\frac{t-1}{2t-1}$	$\frac{1}{2t-1}$	$\mathcal{L}_{\text{BiC}}(h) = \widehat{\ell}_{B_t}(h) + \sum_{i=1}^{t-1} \frac{(t-1) B_i }{ B_t } \widehat{\ell}_{B'_i}(h, H_{t-1}) + (t-1)\widehat{\ell}_{B_t}(h, H_{t-1}) + \sum_{i=1}^{t-1} \frac{ B_i }{ B_t } \widehat{\ell}_{B'_i}(h)$	$ B_i = B_t $

- UDIL can *adaptively* adjust the coefficients based on the data and the history model H_{t-1} .
- It will, ideally, minimize the *tightest bound* in the family of all the generalization bounds.

RUTGERS

$$\begin{split} \sum_{i=1}^{t} \epsilon_{\mathcal{D}_{i}}(h) &\leq \left\{ \sum_{i=1}^{t-1} \left[\widehat{\gamma_{i} \hat{\epsilon}_{\mathcal{D}_{i}}(h)} + \alpha_{i} \widehat{\epsilon}_{\mathcal{D}_{i}}(h, H_{t-1}) \right] \right\} + \left\{ \widehat{\epsilon_{\mathcal{D}_{t}}(h)} + (\sum_{i=1}^{t-1} \beta_{i}) \widehat{\epsilon_{\mathcal{D}_{t}}}(h, H_{t-1}) \right\} \\ &+ \frac{1}{2} \sum_{i=1}^{t-1} \beta_{i} d_{\mathcal{H} \Delta \mathcal{H}}(\mathcal{D}_{i}, \mathcal{D}_{t}) + \sum_{i=1}^{t-1} (\alpha_{i} + \beta_{i}) \epsilon_{\mathcal{D}_{i}}(H_{t-1}) \\ &+ \sqrt{\left(\frac{(1 + \sum_{i=1}^{t-1} \beta_{i})^{2}}{N_{t}} + \sum_{i=1}^{t-1} \frac{(\gamma_{i} + \alpha_{i})^{2}}{\widetilde{N}_{i}} \right) \left(8d \log \left(\frac{2eN}{d} \right) + 8 \log \left(\frac{2}{\delta} \right) \right)} \end{split}$$

10/17/23

$$\begin{split} \sum_{i=1}^{t} \epsilon_{\mathcal{D}_{i}}(h) &\leq \left\{ \sum_{i=1}^{t-1} \left[\gamma_{i} \widehat{\epsilon}_{\mathcal{D}_{i}}(h) + \alpha_{i} \widehat{\epsilon}_{\mathcal{D}_{i}}(h, H_{t-1}) \right] \right\} + \left\{ \widehat{\epsilon}_{\mathcal{D}_{t}}(h) + \left[(\sum_{i=1}^{t-1} \beta_{i}) \widehat{\epsilon}_{\mathcal{D}_{t}}(h, H_{t-1}) \right] \right\} \\ &+ \frac{1}{2} \sum_{i=1}^{t-1} \beta_{i} d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_{i}, \mathcal{D}_{t}) + \sum_{i=1}^{t-1} (\alpha_{i} + \beta_{i}) \epsilon_{\mathcal{D}_{i}}(H_{t-1}) \\ &+ \sqrt{\left(\left(\frac{(1 + \sum_{i=1}^{t-1} \beta_{i})^{2}}{N_{t}} + \sum_{i=1}^{t-1} \frac{(\gamma_{i} + \alpha_{i})^{2}}{\widetilde{N}_{i}} \right) \left(8d \log \left(\frac{2eN}{d} \right) + 8 \log \left(\frac{2}{\delta} \right) \right)} \end{split}$$

$$\sum_{i=1}^{t} \epsilon_{\mathcal{D}_{i}}(h) \leq \left\{ \sum_{i=1}^{t-1} \left[\gamma_{i} \widehat{\epsilon}_{\mathcal{D}_{i}}(h) + \alpha_{i} \widehat{\epsilon}_{\mathcal{D}_{i}}(h, H_{t-1}) \right] \right\} + \left\{ \widehat{\epsilon}_{\mathcal{D}_{t}}(h) + \left(\sum_{i=1}^{t-1} \beta_{i} \right) \widehat{\epsilon}_{\mathcal{D}_{t}}(h, H_{t-1}) \right\}$$
$$+ \frac{1}{2} \sum_{i=1}^{t-1} \beta_{i} d_{\mathcal{H} \Delta \mathcal{H}}(\mathcal{D}_{i}, \mathcal{D}_{t}) + \sum_{i=1}^{t-1} (\alpha_{i} + \beta_{i}) \epsilon_{\mathcal{D}_{i}}(H_{t-1})$$
$$+ \sqrt{\left(\frac{(1 + \sum_{i=1}^{t-1} \beta_{i})^{2}}{N_{t}} + \sum_{i=1}^{t-1} \frac{(\gamma_{i} + \alpha_{i})^{2}}{\widetilde{N}_{i}} \right) \left(8d \log \left(\frac{2eN}{d} \right) + 8 \log \left(\frac{2}{\delta} \right) \right)}$$

RUTGERS UNIVERSITY

$$\begin{split} \sum_{i=1}^{t} \epsilon_{\mathcal{D}_{i}}(h) &\leq \left\{ \sum_{i=1}^{t-1} \left[\gamma_{i} \widehat{\epsilon}_{\mathcal{D}_{i}}(h) + \alpha_{i} \widehat{\epsilon}_{\mathcal{D}_{i}}(h, H_{t-1}) \right] \right\} + \left\{ \widehat{\epsilon}_{\mathcal{D}_{t}}(h) + (\sum_{i=1}^{t-1} \beta_{i}) \widehat{\epsilon}_{\mathcal{D}_{t}}(h, H_{t-1}) \right\} \\ &+ \frac{1}{2} \sum_{i=1}^{t-1} \beta_{i} d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_{i}, \mathcal{D}_{t}) + \left[\sum_{i=1}^{t-1} (\alpha_{i} + \beta_{i}) \epsilon_{\mathcal{D}_{i}}(H_{t-1}) \right] \\ &+ \sqrt{\left(\left(\frac{(1 + \sum_{i=1}^{t-1} \beta_{i})^{2}}{N_{t}} + \sum_{i=1}^{t-1} \frac{(\gamma_{i} + \alpha_{i})^{2}}{\widetilde{N}_{i}} \right) \left(8d \log \left(\frac{2eN}{d} \right) + 8 \log \left(\frac{2}{\delta} \right) \right)} \end{split}$$

10/17/23

UDIL: Experimental Results

- **RUTGERS** UNIVERSITY
- UDIL's representation distribution on synthetic dataset (high-dimensional balls)

• UDIL evaluated on realistic datasets.

Mathad	Duffor	HD-Balls		P-MNIST		R-MNIST	
Method	Duller	Avg. Acc (\uparrow)	Forgetting (\downarrow)	Avg. Acc (†)	Forgetting (\downarrow)	Avg. Acc (\uparrow)	Forgetting (\downarrow)
Fine-tune	-	$52.319{\scriptstyle\pm0.024}$	$43.520{\scriptstyle\pm0.079}$	70.102±2.945	$27.522{\scriptstyle\pm3.042}$	$47.803{\scriptstyle\pm1.703}$	52.281±1.797
oEWC [47]	-	$54.131{\scriptstyle\pm0.193}$	39.743 ± 1.388	78.476 ± 1.223	18.068 ± 1.321	$48.203{\scriptstyle\pm0.827}$	$51.181{\scriptstyle \pm 0.867}$
SI [60]	-	$52.303{\scriptstyle\pm0.037}$	$43.175{\scriptstyle\pm0.041}$	79.045 ± 1.357	17.409 ± 1.446	48.251 ± 1.381	51.053 ± 1.507
LwF [26]	-	$51.523{\scriptstyle\pm0.065}$	$25.155{\scriptstyle\pm0.264}$	$73.545{\scriptstyle\pm2.646}$	$24.556{\scriptstyle\pm2.789}$	$54.709{\scriptstyle\pm0.515}$	$45.473{\scriptstyle\pm0.565}$
GEM [31]		$69.747{\scriptstyle\pm0.656}$	13.591±0.779	89.097±0.149	6.975±0.167	$76.619{\scriptstyle \pm 0.581}$	$21.289{\scriptstyle\pm0.579}$
A-GEM [7]		62.777 ± 0.295	$12.878{\scriptstyle\pm1.588}$	$87.560{\scriptstyle\pm0.087}$	$8.577{\scriptstyle\pm0.053}$	59.654 ± 0.122	39.196±0.171
ER [42]		82.255 ± 1.552	9.524 ± 1.655	$88.339{\scriptstyle\pm0.044}$	$7.180{\scriptstyle \pm 0.029}$	$76.794{\scriptstyle\pm0.696}$	$20.696{\scriptstyle\pm0.744}$
DER++ [5]	400	$79.332{\scriptstyle\pm1.347}$	13.762 ± 1.514	$92.950{\scriptstyle\pm0.361}$	$3.378{\scriptstyle\pm0.245}$	$84.258{\scriptstyle\pm0.544}$	$13.692{\scriptstyle\pm0.560}$
CLS-ER ^[2]		$85.844{\scriptstyle\pm0.165}$	$5.297{\scriptstyle\pm0.281}$	91.598±0.117	$\overline{3.795{\scriptstyle\pm0.144}}$	$\overline{81.771 \pm 0.354}$	$\overline{15.455{\scriptstyle\pm0.356}}$
ESM-ER ^[46]		$\overline{71.995{\scriptstyle\pm3.833}}$	$\overline{13.245{\scriptstyle\pm5.397}}$	$89.829{\scriptstyle\pm0.698}$	$6.888{\scriptstyle \pm 0.738}$	$82.192{\scriptstyle\pm0.164}$	$16.195{\scriptstyle\pm0.150}$
UDIL (Ours)		86.872±0.195	3.428±0.359	$\underline{92.666 \pm 0.108}$	2.853 ±0.107	86.635±0.686	8.506±1.181
Joint (Oracle)	∞	$91.083{\scriptstyle\pm0.332}$	-	$96.368{\scriptstyle\pm0.042}$	-	$97.150{\scriptstyle\pm0.036}$	-

HD-Balls, Permuted-MNIST, Rotated-MNIST

• UDIL evaluated on realistic datasets.

Method	Buffer	$\mathcal{D}_{1:3}$	$\mathcal{D}_{4:6}$	$\mathcal{D}_{7:9}$	$\mathcal{D}_{10:11}$	Ov	erall
		Avg. Acc (†)				Avg. Acc (†)	Forgetting (1)
Fine-tune	-	73.707 ± 13.144	34.551 ± 1.254	29.406±2.579	$28.689{\scriptstyle\pm3.144}$	$31.832{\scriptstyle\pm1.034}$	73.296±1.399
oEWC [51]	-	74.567 ± 13.360	$35.915{\scriptstyle\pm0.260}$	30.174 ± 3.195	28.291 ± 2.522	30.813 ± 1.154	74.563±0.937
SI [66]	-	74.661 ± 14.162	$34.345{\scriptstyle\pm1.001}$	30.127 ± 2.971	$28.839{\scriptstyle\pm3.631}$	32.469 ± 1.315	73.144 ± 1.588
LwF [29]	-	$80.383{\scriptstyle \pm 10.190}$	$28.357{\scriptstyle\pm1.143}$	$31.386{\scriptstyle\pm0.787}$	$28.711{\scriptstyle \pm 2.981}$	$31.692{\scriptstyle\pm0.768}$	$72.990{\scriptstyle\pm1.350}$
GEM [34]		$79.852 {\pm} 6.864$	38.961±1.718	$39.258{\scriptstyle\pm2.614}$	$36.859{\scriptstyle\pm0.842}$	37.701±0.273	22.724±1.554
A-GEM [8]		$80.348{\scriptstyle\pm 9.394}$	41.472±3.394	43.213 ± 1.542	39.181±3.999	$43.181 {\pm} 2.025$	33.775 ± 3.003
ER [46]		90.838 ± 2.177	79.343 ± 2.699	68.151 ± 0.226	65.034 ± 1.571	$66.605{\scriptstyle\pm0.214}$	$32.750{\scriptstyle\pm0.455}$
DER++ [6]	500	92.444 ± 1.764	88.652 ± 1.854	80.391 ± 0.107	$78.038{\scriptstyle\pm0.591}$	$78.629{\scriptstyle\pm0.753}$	21.910 ± 1.094
CLS-ER ^[3]		$\overline{89.834}{\scriptstyle \pm 1.323}$	78.909 ± 1.724	$\overline{70.591}_{\pm 0.322}$	*	*	*
ESM-ER 50		84.905 ± 6.471	51.905 ± 3.257	53.815 ± 1.770	50.178 ± 2.574	52.751 ± 1.296	25.444 ± 0.580
UDIL (Ours)		98.152±1.665	$89.814{\scriptstyle\pm2.302}$	$83.052{\scriptstyle\pm0.151}$	$81.547{\scriptstyle\pm0.269}$	$\textbf{82.103}{\scriptstyle \pm 0.279}$	$19.589{\scriptstyle\pm0.303}$
GEM [34]		78.717±4.831	43.269±3.419	$40.908{\scriptstyle\pm2.200}$	$40.408{\scriptstyle\pm1.168}$	41.576±1.599	18.537±1.237
A-GEM [8]		$78.917{\scriptstyle\pm8.984}$	41.172±4.293	44.576 ± 1.701	38.960 ± 3.867	42.827 ± 1.659	33.800 ± 1.847
ER [46]		90.048 ± 2.699	84.668 ± 1.988	77.561 ± 1.281	$72.268{\scriptstyle\pm0.720}$	$72.988{\scriptstyle\pm0.566}$	$25.997{\scriptstyle\pm0.694}$
DER++ [6]	1000	$\overline{89.510{\scriptstyle\pm5.726}}$	$92.492{\scriptstyle\pm0.902}$	88.883 ± 0.794	$86.108{\scriptstyle\pm0.284}$	86.392 ± 0.714	13.128 ± 0.474
CLS-ER [3]		92.004 ± 0.894	$\overline{85.044}{\scriptstyle \pm 1.276}$	*	*	*	*
ESM-ER [50]		85.120 ± 4.339	54.852 ± 5.511	61.714 ± 1.840	55.098 ± 3.834	58.932 ± 0.959	20.134 ± 0.643
UDIL (Ours)		98.648±1.174	93.447 ± 1.111	90.545±0.705	$87.923{\scriptstyle\pm0.232}$	88.155±0.445	$12.882{\scriptstyle\pm0.460}$
Joint (Oracle)	∞	-	-	-	-	99.137±0.049	-

Sequential CORe-50

Conclusion

- Proposed a principled framework, UDIL, for domain incremental learning with memory to *unify various existing methods*.
- Theoretical analysis shows that different existing methods are equivalent to minimizing the same error bound with different *fixed* coefficients.
- UDIL allows *adaptive* coefficients during training, thereby always achieving the tightest bound and improving the performance.

